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A B S T R A C T

The work involved the analysis and in-depth study of an auditory vi-

sual model to explain the formation of the taxonomic response and the

fast-mapping abilities of children in early childhood. We started from an

existing model that implements the visual and auditory categorization

through the use of two self-organizing maps (SOM) and the association

capacity, needed to learn the words, through Hebbian associative learn-

ing: the model is severely limited in the number of words that is able to

learn without previously accomplishing a strong categorization process.

Our proposal adds two major new features: first, the presence of a form

of non-conventional, incremental training, in which the categories are pre-

sented in stages; second, the ability of the two self-organizing maps (vi-

sual and auditory) to grow during training phase (Growing-SOM) when

they are no longer able to consistently represent categories. Some prelim-

inary tests lead us to believe that the model is able to automatically adapt

to the training set which is subjected, leading to strong performance ad-

vantages in the presence of a form of incremental training, most likely

the type of "training" which is subject a child in the first twenty-four

months of life. Finally, we conducted an in-depth study on the theoretical

meaning of "errors of over-extension" during production tests: this made

it possible to identify more carefully the nature of this type of errors and

isolate more effectively the reasons why they take place within the model

(categorization errors or associations errors).
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1
I N T R O D U C T I O N

To understand the Turing model of ’the brain’, it was crucial to see that it

regarded physics and chemistry, including all the arguments about quan-

tum mechanics..., as essentially irrelevant. In his view, the physics and

chemistry were relevant only in as much as they sustained the medium for

the embodiment of discrete ’states’, ’reading’ and ’writing’. Only the logical

pattern of these ’states’ would really matter. The claim was that whatever

a brain did, it did by virtue of its structure as a logical system, and not

because it was inside a person’s head, or because it was a spongy tissue

made up of a particular kind of biological cell formation. And if this were

so, then its logical structure could just as well be represented in some other

medium, embodied by some other physical machinery. It was a materialist

view of mind, but one that did not confuse logical patterns and relations

with physical substances and things, as so often people did.

— Alan Hodges, preface of The Computer and the Mind: An introduction

to Cognitive Science by Philip Johnson-Laird.

The foreword by Alan Hodges reflects the simulation approach to

which computer science is moving: if in the beginning the computers

were seen as simple machines to perform functions and deliver quick re-

sults, with technological change, and the advent of increasingly complex

models, many algorithms have been developed with the idea of solving

problems in the same way they are solved by humans. This new point

of view to pursue the same results has led to the emergence of new ap-

proaches in Artificial Intelligence (later called strong, precisely because

of their simulative nature), which find their highest expression in Artifi-

1



2 introduction

cial Neural Networks. These models, from a strictly functional point of

view, are part of the set of machine learning techniques together with

many other classical optimization algorithms that are very distant from

the functioning of the human brain. Moreover, the logical pattern of the

latter, mentioned by Hodges, is far from being completely uncovered. We

call psychology the kind of scientific investigation that studies the psycho-

logical, mental processes, and cognitive components in their conscious

and unconscious.

A special branch of psychology is called experimental psychology and

uses the experimental method in the investigation of cognitive processes.

In recent years, a strong use of artificial neural networks has been done

in experimental psychology: since it is difficult to identify analytically

how cognitive processes are realized in the brain, the experimental simu-

lation approach, based on scientific evidence, tries to emulate the opera-

tion of the first by obtaining the same type of results from models that

are based on computational units similar to biological neurons. Through

benchmarking and comparative techniques we can get valid indications

on the development of complex cognitive processes.

The work done in this thesis has as main objective the development

of a model that explains the incurring of a particular linguistic constraint

needed to language learning in early childhood: the taxonomic constraint.

This consists in the part of children’s ability to learn, after a single events

of association, that a given word refers to an object and to all objects of

the same kinds (belonging to the same category). To investigate the origin

of this type of constraint, and its implication in development of language

in early childhood, we have been inspired by a model described in the

literature by Mayor & Plunkett (2010), whose plausibility is undermined

by some limitations, including the inability to learn new words after a

previous categorization process.

With the aim to overcome this limitation, the major result achieved

was the introduction of a new neural model for the simulation of visual

and auditory cortex, able to evolve as a result of the introduction of new
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categories during the training phase. The introduction of Growing SOM

(replacing classical static SOM) at the base of the model was conducted

starting from a technique illustrated in the literature in the mid ’90: the

method of Bernd Fritzke has been modified to obtain a type of expansion

necessary to exceed the limitation of the model. The results obtained are

very encouraging, bringing the model to have similar performance to the

same architecture created with static larger SOMs, with necessarily fixed

and previously established dimension. The dynamic expansion increases

the plausibility of the model, providing a much desired feature, and giv-

ing credit to the way in which the ability to respond in a taxonomic way

manifests itself in young children.

In the background, the work done has allowed us to develop useful

visualization tool for studying the behavior of self-organizing map by a

double point of view, both as vector and topological-organized spaces;

furthermore, we re-defined the meaning of over-extension (during pro-

duction test), identifying more accurately the origin of this type of errors

in the model, isolating them more efficiently from random errors.

The thesis is structured as follows: in chapter 2, is conducted in-depth

analysis of the SOM model originally proposed by professor Teuvo Ko-

honen. The Kohonen maps are the basis of visual auditory neural model

discussed in detail in chapter 3: in the latter, we present the meaning of a

linguistic constraint, the learning by Hebbian association and we illustrate

some pictures of tools made and used for experiments. In chapter 4, they

are brought to light the shortcomings of the initial model, with emphasis

on new words learning limitations. In the same chapter we present the

learning technique with incremental introduction of categories, the intro-

duction of Growing SOM, and two expansion modes: at last, the results

recorded during trials, before and after the introduction of the improve-

ments. In chapter 5, we discuss some potential future development of the

model. A selection of specific trial results could be found in appendix.





2
S E L F - O R G A N I Z I N G M A P

Even though the Perceptron was just a simple but severely limited binary

classifier, it introduced a great innovation: the idea to simulate the basic

computational unit of a complex biological system that exists in nature.

In this chapter, it will be illustrated the functionalities of self-

organizing-maps as neural network model. SOMs are one of the key el-

ements of the visual uditive model presented in chapter 4. In this chap-

ter, the reader will find an introduction to neural network model in sec-

tion 2.1, the formalization of SOM model in section 2.2, the explanation

of SOM training algorithm in section 2.3 (inspired by [11]) and examples

of use in categorization problem in section 2.4 (taken from [6]). Finally,

the last session (section 2.5) of this chapter, as in all other chapters of the

thesis, contains a brief summary of what was said before.

2.1 neural networks as computational tools

2.1.1 Brief history

In recent years, machine learning and cognitive science began to share

tools and techniques to achieve different purposes. One of the tools most

worth of attention are the artificial neural networks (ANN). We can date

the birth of artificial neural networks in 1958, with the introduction of

Perceptron [33] by Frank Rosenblatt. It was the first algorithm created

to reproduce the biological neuron. Conceptually, the easier perceptron

that you might think of is made of a single neuron: when it’s exposed

5



6 self-organizing map

to a stimulus, it provides a binary response, just as would a biological

neuron. The easiest way to implement this simple classifier is to estab-

lish a threshold function, insert it into the neuron, combine the values

(eventually using different weights for each of them) that describe the

stimulus in a single value, provide this value to the neuron and see what

it returns in output. This model differs greatly from the neural network

involving billions of neurons in a biological brain. Shortly after his birth,

the researchers showed the world the problems of Perceptron: in fact, it

was quickly proved that perceptrons could not be trained to recognize

many classes of input patterns. To get a more powerful network, it was

necessary to take advantage of multiple level of units and create a mul-

tilayers perceptron, with more intermediates neurons used to solve lin-

early separable1 subproblems, whose outputs were combined together by

the final level to provide a concrete response to original input problem.

Even though the Perceptron was just a simple but severely limited binary

classifier, it introduced a great innovation: the idea to simulate the basic

computational unit of a complex biological system that exists in nature.

However, the need to study and understand how real neurons are bound

to each other in the biological brain goes back to previous work.

2.1.2 Cell-assemblies

The most important work by Donald Hebb is The organization of behav-

ior [7] of 1949. In this book Hebb combined for the first time data from

the physiology of the nervous system with those of studies on human

behavior, to which he added the personal experience derived from ob-

servation of the primates. His theory on learning association was born

as an attempt to reconcile some seemingly inexplicable findings with the

knowledge of the time, such as the fact that the human perceptual sys-

tem can recognize a stimulus, such as a circle, although he sees it from

different angles and with a form not exactly circular [38]. To solve this

problem, Hebb introduced what is still known as the Hebb rule, or Heb-

1 This condition describes the situation in which there exists a hyperplane able to separate,

in the vector space of the inputs, those that require a positive output from those requiring

a negative output.
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bian learning: according to this rule, «when an axon of cell A is near enough

to excite cell B and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such that A’s effi-

ciency, as one of the cells firing B, is increased». The combination of neurons

which could be grouped together as one processing unit, Hebb referred to

as "cell-assemblies". He also hypothesized that their combination of con-

nections made up the ever-changing algorithm which dictated the brain’s

response to stimuli. This hypothesis will be basically confirmed in the fol-

lowing decades: a key aspect of neural models is precisely the topology

of the network (especially in SOM), so that it is reasonable to think that

the learning algorithm of some of them resides in part in the way the

computational units can communicate with each other.

The Hebb rule and Hebbian learning together form the second key

element of the auditory visual model that will be presented in chapter 3

section 3.3.

2.1.3 Kohonen Maps

Although the exact explanation of how certain cognitive processes

develop in real brain is still a question that has not been given precise

answer, neural networks as models start from the idea to simulate the in-

teraction between artificial neurons, just like is done in the brain. A neural

network is therefore a set of neurons interconnected by synapses: some of

them receive input signals that can propagate to other unit/output with

different intensity (possibly zero), depending on the configuration inside

the neuron.

Different neural network models have been developed after Rosen-

blatt’s Perceptron and its variants. As we said, as a computational tools,

Perceptron has been initially discarded because it can solve a rather nar-

row class of problems (those linearly separable). The debate on research

in this area was reopened only in the early ’80, with the publication of

the studies of the American scientist John Hopfield, working on models

of pattern recognition. In those years, the Finnish professor Teuvo Ko-

honen introduced to the scientific community the Kohonen Maps, today

known as Self-Organizing Map or SOM. This model consists of a group of
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neurons topologically arranged in a lattice, able to self-organize through

unsupervised learning. The appearance of unsupervised learning is often

sought after, especially in models that want to be psychologically (and

neurobiologically) plausible. In essence, the learning of the ANN can oc-

cur in two modes: the supervised one makes use of the label of input

patterns examined during training. Many models make use of this tech-

nique because they inherit, from the world of machine learning, the idea

to minimize the accumulated error (calculated by checking systematically

the result obtained by the algorithm of classification on the input pro-

cessed during the training phase). The technique of unsupervised learn-

ing, used by algorithms such as the Kohonen Maps, is more independent

during the training: that is to say, the training algorithm does not need

a training set "labeled", as the model discovers automatically similarities,

with the "downside" of not being able to choose in advance the number of

classes of the problem in the output space, but having to define them on

the basis of the output data from the model itself. One of the biggest criti-

cisms of the supervised learning algorithm consists precisely in their need

for a labeled training set: in fact, there is no evidence that cognitive pro-

cesses that take place in the biological brain make use of error correction

techniques. Finally, self-organizing maps are different from other artificial

neural networks as they apply competitive learning. The goal of learning

in SOM is to specialize different parts of the map’s lattice to respond sim-

ilarly to particular input patterns. This is partly motivated by how visual,

auditory and other sensory information are handled in separate parts of

the cerebral cortex in the human brain: in this sense, as we said before,

the SOMs are a neurobiologically plausible model. SOM model proved to

be able to function very well with input data with high dimensionality,

as a technique of unsupervised learning capable to produce a discretized

representation of the input space with reduced dimensionality.

In the next sections it is presented the model originally proposed by

Kohonen, starting from the mathematical formalization, the learning al-

gorithm, and the technique used to categorize new stimuli. Later in this

work, it is made extensive use of the concepts introduced in the following

sections: the model that is presented in those pages has its bases on two

distinct SOM, a map that simulates the visual, the other auditory cortex
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in real brain. For those who are familiar with the structure of the neural

network topologically organized proposed by Kohonen, please refer to

chapter 3.

2.2 formalization

2.2.1 Model description: a topologically organized space

As we said, SOM consists of a set of neurons also called nodes or

units. Each neuron is associated with two information: a weight vector of

the same size of the input data and a position in the grid on which are

placed the neurons. Because of this characteristic, a SOM consists of an

n-dimensional vector space, with n well-defined dimension equals to the

number of elements (features) of the input vectors, filled with m point

(neurons): the space is also topologically organized, with topological or-

der defined by the location of each neuron on the map’s grid. The grid can

take many forms, usually linear form such as rectangular or hexagonal.

In Figure 1 are shown some possibile grids. For examples, given a rect-

Figure 1: SOM possible grid

Each point represent a neuron (computational unit); lines are synapses between

neurons and form with them what is called lattice of map.

angular lattice m · l with m · l neurons, neuron n is defined by its weight

vector wn and its coordinates x, y on the map. Given weight length k,

input vectors have k elements describing the input with k different char-

acteristics.
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2.2.2 Performance indicators of model

The quality of the self-organizing map can be assessed by two major statis-

tics:

• Quantization Error (aka Q. Error or QE): is computed by determin-

ing the average distance of input vectors to the prototype vector of

the BMU that represents them. In formula,

QE =

∑i=N
i=1 ||xi −Wci ||

N
(1)

• Topological Error (aka T. Error or TE): is the most simple measure

for topology preservation. For all input vectors the respective BMU

and the second-BMU are determined. If these two are not adjacent

on the map lattice then this is considered an error. It is calculated as

TE =
#errors
N

(2)

where 0 means perfect topology preservation.

These indicators will be useful when you will be presented with two

SOMs at the base of the visual auditory model presented further. Espe-

cially the QE play a fundamental role in Hebbian learning. For more

details, refer to section 3.3, chapter 3.

2.3 training

SOMs apply competitive learning: the idea is to strengthen the weight

vectors of the neurons that respond more strongly to a particular pattern

(also called best-matching unit or, shortly, BMU), while systematically in-

creasing the likelihood that the same neuron, in subsequent iterations,

will respond with greater "emphasis" to the same input pattern or a slight

variation. To obtain this result, an activation and update rule are defined:

the first allows us to decide which neuron is activated with greater "em-

phasis", the second allows us to reinforce the weights of that neuron2. Af-

ter the presentation of all pattern in training set, a training-epoch ended.

2 Also its neighbors: more details later in text.
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The weight vectors of neurons are initially randomly set3: furthermore,

given a fixed epoch e, the update of the weight vector in e of each neuron

can occur in two distinct moments, depending on whether you make use

of the classical learning algorithm or batch variant. We will return on the

learning algorithm later in Equation 2.3 and subsection 2.3.1.

After n epochs in which all input patterns are randomly selected from

the same set of training, neurons on the map are organized in such a way

that similar areas of the map correspond to similar patterns of the input

space. Then weight vectors of the map are frozen: to categorize, a new

stimulus is presented to the map and, using the same rule employed in

training to determine what was the Best-Matching Unit, we can establish

what is the BMU that is activated with greater intensity: depending on

the position of the neuron on the grid, it is possible to read on map the

category which the stimulus belongs to. The capacity of the map of cat-

egorizing depends on multiple factors, such as the number of training

epochs. Although the training operation appears to be simple, there are

many parameters involved in successful learning and which determine

the quality of the trained map: unfortunately, there are no precise rules

to better adjust these parameters. In the next paragraph, we will discuss

about the most important parameters and rules should be laid down for

training.

As we said, the results of the training phase are closely related to the

number of training epochs. However, there are at least two other parame-

ters that affect in a substantial way how the neurons of the map are self-

organizing: these are the neighbor function and the learning rate. The first

defines how the proximity between two neurons affects the updating of

the weights. More precisely, we have said that the update of the weights

involves substantially BMU of the input pattern, but also its neighbors.

The neighbor is a function that defines how the proximity to the BMU

affect updating: it could be a constant function (fixed value) or vary over

time narrowing more and more the "radius" of neurons involved in the

3 However, the weights of the neurons could be initialized either to small random values

or sampled evenly from the subspace spanned by the two largest principal component

eigenvectors.
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Figure 2: Example of SOM weights updates

A demonstration of weights update result respect to original unit position.

update4. weight vectorThe second parameter is called the learning rate

and is a monotonically decreasing learning coefficient: it is commonly

called α.

formulas All we said in the previous paragraph could be written in

two different formulas. The first is the activation rule. Given the Euclidean

distance function from x(t) and Wk(t) (where t is the epoch number, x

the input pattern, Wk(t) the weight vector of neuron k in t) as

dk(t) = ||x(t) −Wk(t)|| (3)

we define BMU the neuron b such that:

db(t) = min
k
dk(t); (4)

when the d function is defined as said above. In other words, each time

that an input pattern is presented to the map, the activation rule says

that the BMU is the neuron such that the Euclidean distance between its

weight vector and the input pattern is minimal.

4 This is not to say that the update does not involve in every epochs all the neurons of

the map. The neighbor affects the delta that is added / subtracted to each component of

the weight vector of each neuron. For neurons sufficiently distant update turns out to be

negligible, but conceptually the update involves in every epochs all the neurons of the

map.
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The second formula is the update rule, used during training to update

weight vectors of neuron. This rule is activated for all k neurons of the

map, with the neuron b that plays the role of BMU, chosen by the rule

defined above. During every epoch training, every time5 a stimulus is

presented to the map, the neuron c is chosen as BMU using activation

rule. Subsequently, the following operation is performed.

Wk(t+ 1) =Wk(t) +α(t) · hck(t) · [x(t) −Wk(t)] (5)

where:

• t+ 1 is the current training epoch number (t is the previous);

• Wk is the weight vector of neuron k;

• α(t) is the learning rate value at epoch t;

• x(t) −Wk(t) is the difference between weight vector of neuron k

and input x in epoch t;

• hck is the function that uses the value of the neighbor in epoch t

to modulate the updating: the results of this function are calculated

based on the distance between the BMU and the neighboring neu-

ron k in the map’s grid. Euclidean distance is commonly used. The

h function could be defined as:

hck = e
−

||cordk−cordc||
2

σ(t)2

in Gaussian form;

hck =

 1 ||cordk − cordc||
2 < σ(t)

0 otherwise

in piecewise form;

with cordk and cordc coordinates between neuron k and BMU c

and σ(t) neighbor function value in epoch t;

weight vectors

5 Or one time only at the end, depending on which algorithm is used.
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There are at least two different versions of the training algorithm: in

the first the weights are updated after every pattern presentation. In batch

mode, update are computed all in one time, after all pattern was pre-

sented. In next page is shown the pseudo-code of the classical version

(Algorithm 1).

Algorithm 1: SOM classical training algorithm.

Data: Training set

Result: Trained map

Initialize the weight vectors, Wi ∈ Rn;

t← 0;

for epoch = 1 to Nepochs do

for input = 1 to Ninputs do

t← t + 1;

for k = 1 to Kneurons do

Compute distance dk using Equation 3;

end

Compute BMU for current input using Equation 4;

for k = 1 to Kneurons do

Update weight vectors Wk using Equation 5;

end

end

end

return

2.3.1 Batch training algorithm

In the batch variant of the SOM algorithm the updates are deferred

to the end of a learning epoch, i.e., the presentation of whole training set

and the new weights are computed using these:

Batch update rule

Wk(tf) =

∑t ′=tf
t ′=t0

h̃ck(t
′) · x(t ′)∑t ′=tf

t ′=t0
h̃ck(t ′)

(6)
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Batch Euclidean distance

d̃k(t) = ||x(t) −Wk(t0)|| (7)

Batch activation rule

dc(t) = min
k
d̃k(t); (8)

where t0 and tf stand for, respectively, the beginning and end of the

current epoch. The learning rate factor is explicitly present in the batch

update equation and does not need to be parametrized. The rule involves

all neurons, but depending on neighbor function h, a neuron could not

be affected during an epoch: in this case, Wk(t+ 1) = Wk(t). The batch

variant can only be applied when the whole set of input data is present.

Finally, since the weights are not updated immediately there is no de-

pendency on the order of the input vectors. In next page is shown the

pseudo-code of the classical version (Algorithm 2).

Before proceeding with some examples of use of the SOM in real prob-

lems it is necessary to highlight another thing about the learning algo-

rithm (regardless of the version used), linked in some way to the learning

rate and neighbor function: starting from a state of complete disorder, the

SOM algorithm gradually achieves an organized representation of the in-

put space, provided that the parameters are chosen properly. This adap-

tion process should be decomposed into two phases: an ordering phase

followed by a convergence phase.

Ordering phase It is during this first phase of the adaptation process

that the topological ordering of the weight vectors takes place. This or-

dering phase is relatively short in comparison to the second phase. Large

values for the neighborhood radius and learning rate should be used,

such that the neuron’s weights initially take large steps all together to-

ward the area of input space where input vectors are occurring. These

values then should decrease to their tuning values and, consequently, the

neighborhood decreases to encompass only the closest neighbors.

Convergence phase This phase lasts for the rest of the training or

adaptation process and is necessary to fine tune the network and there-
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Algorithm 2: SOM batch training algorithm.

Data: Complete training set

Result: Trained map

Initialize the weight vectors, Wi ∈ Rn;

t← 0;

for epoch = 1 to Nepochs do

Interpolate new value for σ(t);

Reset numerator and denominator of Equation 6 ;

for input = 1 to Ninputs do

t← t + 1;

for k = 1 to Kneurons do

Compute distance dk using Equation 7 ;

end

Compute BMU for current input using Equation 8;

for k = 1 to Kneurons do

Accumulate numerator and denominator of Equation 6;

end

end

for k = 1 to Kneurons do

Accumulate numerator and denominator of Equation 6;

end

end

return

fore provide an accurate statistical quantification of the input space. Dur-

ing this phase the weight vectors converge to their correct values. For

this, the neighborhood should be fairly small, encompassing only the im-

mediate neighbors. This also applies to the learning rate, such that the

magnitude of the weight updates is very small. The convergence phase is

usually several times longer than ordering phase.
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2.4 example of use in categorization problem

2.4.1 Color categorization

SOMs are capable of grouping by similarity high dimensionality data

and display groups in a reduced number of dimensions (i.e. two dimen-

sions). Suppose we have available the color scale shown in Figure 3. We

divide this color scale in 25 parts, each colored with a different color of the

scale. The various parts are our input patterns. The task is to group them

by color, in a way such that similar parts are mapped by near neurons on

the map (we can think about different brightness as different categories).

Each of the input patterns is mathematically represented by a triple RGB,

then we want to categorize 3-dimensional inputs.

Figure 3: HSV colormap scale from MATLAB

Suppose we have available a map with 100 neurons an hexagonal grid

(10x10), such as that shown in Figure 4.

Figure 4: SOM structure

We initialize the weights of the map randomly, aligning them with av-

erages calculated on samples of input patterns taken at random from the

set of 100 defined above: we can see the resulting map in the left upper

corner of Figure 5. The various units were filled with RGB colors that

correspond to the respective weight vectors.
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In the same figure we can see resulting map during training at 5, 10,

15, 20, 25 epochs, respectively. In this trivial example of categorization,

it is shown clearly how the weights of the map’s units align with the

input patterns. In addition, you can clearly note the distinction between

the ordering phase and the convergence phase: in fact, the first half of

the training brings the map to align themselves in a position that will

maintain almost unchanged in the second half of the training, except for

some slight modification (i.e. see angle at the bottom right of epoch 15-20-

25).

Figure 5: SOM epoch training

Images from left downer corner to right show weight vectors during map

training. In left upper corner map training status reveal lots of noise: each unit

is colored with using respective weights as RGB values representation. After 25

epochs, weights are aligned with input patterns: organization is reached.

2.4.2 Visual pattern categorization

Imagine to have a series of images, not necessarily complex: for sim-

plicity, suppose we have available only the outlines of well-defined shapes,

black on white. There are many image processing techniques that can en-

code the edges of a figure within a image: although the input encoding

problem is fundamental to the study of neural networks, we assume that
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the contours are defined by pixels. The information that describes these

pixels, since they are all blacks, is linked only to the position in the grid:

setting an origin, we can imagine our figure as a polygon traced by a con-

tinuous line (in reality, segmented to arbitrarily thin grain) in a Cartesian

plane in which every point is defined by (x, y) coordinates. In Figure 6 we

see some examples. These coordinates, set a way by which to order them,

they can be concatenated into a vector, which becomes the coding of the

image, shown in the figure below each view through coordinates. In this

scenario, it was decided to encode blacks points, and reading them by col-

umn from left to right, the x, y coordinates of each point are concatenated

consecutively. Alternatively, you can encode the white spots, or make fur-

ther changes to make the coding insensitive to scaling transformations,

rotations, etc. Below, you can see a classification of visual patterns, en-

coded using three different values. The SOM, in this example can be a

useful categorization tool and pattern recognition, as similar areas will

be able to categorize visually similar animals.

Figure 6: Visual pattern encoded for SOM training.

In Figure 7, we see the evolution of a SIM that categorizes visual pattern

defined along three dimensions: these correspond to the size, in cm, on
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the x, y and z of the animal’s profile seen from the front. The map is

displayed every 10 training epoch, for a total of 100 training epochs with

standard parameters defined by the library SOM Toolbox. The categories

defined in the epoch 80, 90 and 100 on the map are displayed in the

screenshot larger than the earlier epochs. The colors, as far as possible,

are aligned with the diversity between categories: we have confirmation

of the categorization ability of the map also thanks to the grouping of

cold and warm colors in different areas, in addition to the names of the

categories that defined by each neuron.

Figure 7: SOM evolution during standard training with category boundaries

highlighted by different colors.

2.5 summary

In this chapter we introduce some key concepts necessary for visual

auditory model described in chapter 3, starting from some historical notes

related to the birth of the interest and the study of ANN in section 2.1

to the formalization of the SOM in section 2.2. In section 2.3 we have

provided a detailed description of the algorithm of learning (the classic

version and the batch) and, finally, in section 2.4 we presented a simple

example of using the color classification somtoolbox and MATLAB. In the
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next chapter, we will present the visual auditory model created to explain

language acquisition in young children, showing how this is based on the

proper functioning of the SOM.
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Contents: tools to display Voronoi tessellation on the lattice of a SOM,

with a table with relative distances between the defined cateweight vector-

gories, useful for viewing the dual nature of the space defined by the SOM

and analyze the topological organization of the categories corresponding to

the distance between the prototypical pattern from which they are defined;

formalization of a testing algorithm in production that identifies accu-

rately the causes of over-extension errors, with detailed analysis of the

origin of the error.

In this chapter, we present the neuro-computational model using

SOMs that accounts for the emergence of taxonomic responding and fast

mapping in early word learning, as well as a rapid increase in the rate of

acquisition of words observed in late infancy. This model was developed

by Julien Mayor & Kim Plunkett ([21]): as research work, we retraced

their steps rebuilding the model from the beginning, to test the limits

and try to overcome them. In section 3.1 we retrace the reasoning by the

original authors leading to the formalization of the model, talking more

specifically about the problem and linguistic constraint that guide word-

learning in early childhood; section 3.2 describes the set up of the two self-

organizing maps simulating the visual and auditory cortex; in section 3.3,

it’s introduced Hebb rule and the mechanism of learning by association;

in section 3.4 it’s presented evaluation factor and production-testing al-

gorithm created to explore precisely the causes of the errors committed

by the model; section 3.5 shows some demos of the model in action, with

23
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pictures and results related with discussion about limitations. Finally, sec-

tion 3.6 contains a brief summary of what was said in the chapter.

3.1 early word learning

3.1.1 The problem

A central question in early lexical development is how infants learn

to understand the meaning of words. In a typical labelling situation, the

caregiver points at an object (i.e. a dog) and says "Look, this is a dog!".

Then magic happens: he is able to understand that the word "dog" refers

not to the size, the color, in that particular dog or to a part thereof, but to

dog and all the other dogs (Plunkett, [24]). Moreover, dog could also refer to

"the dog and his bone", or "Mommy petting the dog" or "the dog under a

tree". In other words, objects are often found in spatial, causal, temporal

or other relations with other objects, so what prevents the child from

thinking that the label refers to the objects that are related? [17].

The research for the past several years has come to the conclusion that

language learners make use of special linguistic constraints: these play

a key role in early words learning, allowing the children to learn more

easily the associations between words and objects, thus explaining the

growth of vocabulary and the consequent ability of learning new words

in adulthood. We may think that «contraints guides children’s initial hy-

potheses and eliminates numerous hypotheses from consideration» (Ellen

M. Markman, [17]).

The most important constraints are Whole Object Constraint (for short

WOC), Taxonomic Constraint (for short TC) and Mutual Exclusivity (for

short ME). In the next few paragraphs we explain the meanings of these

constraints and how they provide support lexical learning in early child-

hood. According to Plunkett [24], these three constraints are not innate:

as opposed, can emerge from processes of associative learning. We find

confirmation of this statement in the model that will be presented in the

following pages (initially introduced in [21]). In section 3.5 we’ll talk pro-

fusely about limits of the model, testing its solidity and analizing results.
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In chapter 4 are shown extensions and additions that led to overcome

some limitations. Before formal explanation of the model (section 3.3), we

analyze briefly the meaning and the contribution that the three linguistic

constraints above lead to new words learning in early-childhood.

3.1.2 Linguistic constraints

whole object constraint WOC occurs when children associate

a label to an object without making the mistake of labelling a specific

part of it. In other words, labels are always associated with the whole

object. In [21], Mayor & Plunkett argued that the abstract coding scheme

adopted for visual objects (Posner & Co, [28, 29, 31, 30]), allows them

to remain agnostic as to the types of attributes involved in category for-

mation, so that input categories can be interpreted as instantiating family

resemblance characteristics defined across, say, either functional or percep-

tual attributes: however this involves accepting more limitations on visual

recognition. Categorization of visual objects remains one of the big chal-

lenges despite an enormous progress in this area. The principal problem

is the selection of the features that can represent a visual object in a way

invariant to factors like rotation, scaling, changes in illumination and the

viewpoint [26]. Also in speech recognition, a sophisticated phonological

knowledge must be taken in account: in [37], White & Morgan demon-

strated that toddlers as young as 19 months have highly detailed and

apparently adult-like lexical representations. We will return later in this

chapter on these consideration, talking about visual-auditory capabilities

and consequences on recognition performance.

Returning to WOC, researchers agree in thinking that neural networks

in the hippocampus stores episodic memories and that their computa-

tional / architectural structure resembles that of an auto-associator [35].

An auto-associator is capable to compute correlations in the activity of dif-

ferent components of the input signal, and adjust the connections appro-

priately (Plunkett, [24]). We have already mentioned the auto-associator,

without providing a specific name. In the introduction to chapter 2, we

briefly mentioned Hopfield works on mechanisms of pattern recognition:



26 visual auditory neural model

Hopfield introduced his idea of recurrent artificial neural network1 in

1982 [8]. His ANN serve as content-addressable memory systems with

binary threshold nodes, providing a model to understand human mem-

ory. A simple associative implementation of the WOC might exploit an

auto-associator: the WOC can then be construed as encoding a pattern

of correlations between a package of linguistic features and a package of

visual features in a compound audio-visual stimulus. Despite the WOC

is topic of interest, the constraint that emerges from the analyzed model

in chapter 3 and chapter 4 is second on the list, called TC or Taxonomic

Constraint. However, for those interested WOC auto-encoder is presented

by Plunkett in [24].

taxonomic constraint They are two definitions of the taxonomic

constraint: at first glance may seem similar but stronger definition brings

an extra feature to be satisfied. The weak definition assumes that

«labels refer to objects of like kind rather than objects that are the-

matically related» - Markman, [18]

In other words, labels refer to objects that belong to the same taxonomic

category, where a category can be defined in terms of visual features

(visible or hidden, such as "color" or "tail size") or functional relations

(dynamic or abstract, such as "belong to the animal world"). The strong

definition says that

«when infants embark upon the process of lexical acquisition, they

are initially biased to interpret a word applied to an object as refer-

ring to that object and to other members of its kind» - Waxman,

[36]

In this form, TC is secretly linked to the ability to quickly obtain the

same general and effective connection expressed by weak definition

of TC, between the name of a category (i.e. dog) and "objects" that are

1 Also known as R(A)NN, is a class of artificial neural network where connections between

units form a directed cycle. This creates an internal state of the network which allows it to

exhibit dynamic temporal behavior. The Hopfield network is of historic interest although

it is not a general RNN, as it is not designed to process sequences of patterns. Instead it

requires stationary inputs. It is a RNN in which all connections are symmetric.
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visually recognized as part of the same category (i.e. specific, possibly

different, dogs). Practically, children that use the linguistic taxonomic

constraint defined strong, infer that every object that belongs to the same

category is called by the same name after a single labelling event. This

ability is also known as fast-mapping. We will return soon on this aspect.

The studies in [18] of Markman & Hutchinson tested both the taxo-

nomic (following the weak definition) and whole object assumption. To

test this, they conducted a series of studies each of which compared how

children would organize objects when they were not provided with an

object label versus when the objects were given a novel label. From the

results of their experiments it follows that even though children consider

thematic relations good ways of organizing objects themselves, they do

not consider thematic relations as possible meanings for words. Thus,

when children believe that they are learning a new word, they shift their

attention from thematic to categorical organization.

To implement the taxonomic constraint, you must define a model that

creates a unique association between a label referring to a category and

more individuals of the same category. The first model introduced by

Plunkett, Sinha, Møller & Strandsby in [27], is an auto-encoder learner,

which has computational properties similar to that of the auto-associator.

We will not go into detail in the explanation of this model: it is enough

to know that it is not able to meet the definition of strong taxonomic re-

sponse. In fact, it requires exposure to multiple object-label tokens, with-

out presenting the ability to fast-mapping required to justify the forma-

tion of the taxonomic response2. In order for this kind of one-shot learn-

ing and generalization to occur, Plunkett & Co concluded that the learner

must have a sort of prior knowledge of the category boundaries.

In 2010, Mayor & Plunkett developed a new model based on SOMs [21]:

this model provides a strong taxonomic response. We will profusely talk

about its formalization in section 3.2. Let’s first briefly present the third

constraint.

2 The strongest form of taxonomic constraint, according to tests conducted on the ability

of categorization of children, provides the ability to quickly get the taxonomic response,

possibly even after a single labeling event.
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mutual exclusivity Imagine that a child sees two objects in a

scene, like a dog and a bottle, and know the name of the word "dog": if

he hears a new word (i.e. "bottle"), he automatically associates it with the

new object in visual scene, although it is known in adulthood that each

object generally has at least two names3 which refer to it. Conceptually,

the constraint that helps him is the mutual exclusion: in [19], Markman

& Co have shown that 15- to 17-month-old infants, upon hearing a novel

word, will search for an alternative object if the only object they can see is

name-known. So the child assumed that an object can only be associated

with a single name. The mechanism that drives ME or the age when ME

is first used remains a matter of dispute. In the next section, we will ex-

plain in detail the configuration of the visual-auditory model by Mayor &

Plunkett.

3.2 visual and auditory soms

The auditory visual model that we have analyzed and implemented

makes use, as already mentioned, of two distinct SOMs. Both maps have

a hexagonal grid4 composed of 625 neurons, as shown in Figure 8. As

discussed in chapter 2, each neuron has an associated weight vector: its

size is tied to the input encoding, consequently is different for the two

maps. Before speaking of the two maps and how they work, we present

the encoding of visual and auditory input patterns.

3.2.1 Visual input patterns

Objects are represented as distorted dot patterns. It was difficult to re-

trace the steps of Mayor & Plunkett in creating patterns as there are many

ways to generate random visual patterns. To stay faithful to the standards

of diversity needed to justify maps behavior during experiment, we made

use of a modified version of the algorithm used by Posner and colleagues

in [31], which uses the Gaussian functions to distort patterns. As usual,

3 We’re talking about common nouns but also proper noun: it’s difficult find an object in

word to which you can only relate with one name.

4 Hexagonal grid means that each neuron has 6 topologically closest to distance 1.
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Figure 8: Visual and auditory SOM in word-learning model.

generating random mathematical objects is always a more difficult task

than you can imagine. The original article by Posner and collegues (a re-

ally hard work that starts in 1962, see [28, 29, 31, 30]) proposes distorted

nonsense dot patterns by means of three different types of statistical rules.

The level of distortion was calculated from the number and probability of

the cells to a given dot which could move and was expressed in term of

uncertainty. However, to simplify and according to what was achieved

by Mayor & Plunkett, we created 100 patterns (prototypes) by randomly

distributing 9 dots over a 30 · 30 square. We then generated 24 tokens in

each category, consisting of 8 tokens at each of 3 levels of distortions. Dis-

tortions are achieved by moving each dot by an amount drawn from a

normal distribution with 3 different standard deviations (i.e., 10, 11, 125)

respectively. Prototypes were not included in the training set.

in detail Precisely, the algorithm used generates a vector of 18 not

repeated integer values between 1 and 30: the indexed values in even po-

sitions are the x coordinates of the points to black in 30 · 30 square, the

5 These values are different from those used in [21]: however, the model has so many pa-

rameters for which it was necessary to perform a very high number of tests before it

reaches an plausible equilibrium situation also useful to assess performance. The distor-

tion patterns (exemplars) used in training / testing is a fundamental aspect of this tuning

phase. According to analyzes carried out after the assembly of the model, parameters

could conceivably vary with other and lead to the same conclusions.
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odd values the y coordinates6. Moreover, the points are generated in such

a way not to be overlapped (i.e. the 9 pairs generated are pairwise disjoint,

equivalently have at least one coordinate different). One of the problems

you have to deal with when you have to generate arbitrarily complex ob-

jects distributed as uniformly as possible in a small space, is to study the

relative maximum distance that can exist between these: this value is hard

to find, and it is also difficult to find a way to exploit it to generate pat-

terns sufficiently different7 from each others. If the portion of the space is

not very wide and with many dimensions, generate sufficiently different

objects can become an expensive operation to be carried out randomly:

in fact, the generation can proceed for an arbitrarily long time (enough

to have memory to hold computation partial results), however, the evalu-

ation of patterns more distant between each others can become complex

to manage for a sufficiently high number of random patterns generated.

The problem can be reduced if we do not just consider as visual features

the keypoints of the figures but also features related to colors or nuances8,

according to what is done in problems of visual analysis. To simplify, as

the authors did in the original model, the implementation is limited to

assessing as visual features only the keypoints of the image.

prototypes generation The algorithm created for the visual pro-

totypes generation takes as input parameter a threshold value (option-

ally expressed as a percentage, in our implementation is set to 0.45): this

threshold is used to calculate the minimum distance required9 between

6 To remain faithful to the one-dimensional representation of the input, we have adopted

the following formalism: each visual pattern (prototype and example) is represented by

a vector of 18 elements where the elements correspond to the 9 coordinates blackened

points in the grid, in order, [x1, y1, x2, y2, ...x9, y9] etc.

7 In all this work, unless otherwise specified, we associate the concept of diversity to the

concept of Euclidean distance because the Euclidean distance is the only unit of measure-

ment understood by self-organizing maps.

8 The increase in the number of features is reflected in the increase in size of the space, ergo

an equal prototypes number is easier to distribute in a uniform manner, in a space with

several dimensions.

9 Such that we can accept the generated prototype since it is sufficiently different from all

others.
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the prototypes generated. To fulfill any measure of comparison, the max-

imum distance between two prototypes must be taken into account. This

can be calculated in different ways: we have taken as an approximation of

this value the distance between the two patterns shown in Figure 9 start-

ing from the left. The algorithm, in our example, estimates 45% of the

maximum distance defined and uses this value as a threshold. For each

generation of a new prototype, it compares the distance of this with each

of those generated previously: if the distance is greater than the thresh-

old calculated earlier, then it proceeds with two consecutive operations of

shuffling of the coordinates, which attempt to move the last generated

prototype away from the nearest prototype for a fixed predetermined

times, after which it passes to the generation of the next prototype. The

whole process is iterated for 10 · n with n the number of prototypes re-

quired. After the generation, n prototypes maximally distant are selected

and returned. We have also created various tools to display maps evolu-

tion and prototypes generated (with their distortions): the latter makes

use of the function scatter from MATLAB standard library to draw a

closed line between the points and the function patch (always from MAT-

LAB) for coloring the defined area. The result of these operations is shown

in Figure 9 (from the third to the last image) In Figure 10 is shown instead

a display screen 25 prototypes and Figure 11 the display of a prototype

and the respective distortions.

A wrong choice The problem of encoding the visual patterns was ini-

tially addressed using a direct binary representation form: that is to say,

each visual pattern identified as binary vector (i.e. 900 cells), with black

point set to 1. This road is definitively the wrong one: indeed introduces

manifold problems, first of all to define a distance function that reflects

the diversity between two patterns. Those which are sufficiently distant

result too similar if we evaluate the distance because the information con-

tained in binary vectors is too weak (many values set to 0 are confused

as similarities, and also numerically the position of 1 does not affect the

calculation of distances for many available distance functions.). To avoid

running into these problems you need to remember the nature of features.
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Figure 9: Twenty-five visual input patterns used as prototypes

In the two left-upper to right figure we see pattern used for maximum distance.

In the other four ones we see creation of a pattern, from dot position to colored

figure.

3.2.2 Auditory input patterns

For the auditory part, the authors of the model made use of advanced

sound analysis to obtain pattern representations consistent with what is

known about phonetic skills of young children. Omitting details about the

technique exploited by Mayor & Plunkett10, we just rebuild auditory pat-

terns using the same number of dimensions and random method equals

to the one used for visual pattern, with the objective to have a placeholder

for the role of "spoken words" to use with the auditory map.

10 In [21], they describes a method to collect recorded spoken words by women (potentially

to evoke the maternal voice that the child should heard more often), with introduction

of high and low variance distortions following a classical 80− 20 law to mimic possible

pronunciations of other people. Following, these sounds were combined, discretized and

normalized so as to obtain likely complete (that maintained much information as possible)

representation of heard words, as intensity of frequency calculated by exploiting the Mel

scale.
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Figure 10: Twenty-five visual patterns used as prototypes

From each of them have been generated 24 distortions, using different Gaussian

sigma values: the pattern are shown in 30x30 grid using scatter and patch

functions by MATLAB. At first glance they seem very different from each other,

for more details see the caption.

In particular, auditory patterns are composed of 28 values ranging be-

tween 1 and 10. In Figure 12, it is shown a sinusoidal representation which

was created to distinguish them from visual patterns.

3.2.3 Input offline testing

After the creation of prototypes and related distortions, many tests

have been conducted on the patterns generated in order to study sparsity

and the conformation of the data. We did three main tests on generated

input patterns:

• Test to see how close are the prototypes from each other. Among all,

the statistics provided by this test generated prototypes include min-

imum average and maximum distance reached between each proto-

type, the upper bound of the distance reached (see above for more

details) and the average distance normalized to the upper bound

expressed as a percentage.
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Figure 11: A visual pattern used as prototype and its distortions

The green ones are generated with smaller sigma distortion value and are more

similar to the original prototype showed in the left upper corner in blue. The

red ones and light blue ones are more distorted, according to higher sigma

values used during generation. We want to emphasize that the display itself is

subject to approximation: in fact, scatter and patch functions used to

transform the points in figures are very sensitive to coordinates variations. Then

a stronger variation on multiple points can result in a different order in which

the points are taken into consideration to close the line that defines the contours

of the figure, generating in conclusion a pattern that appears to be diametrically

different from the original one. If we analyze the coordinate values, these do

not differ more than anticipated by those of the prototype of departure.

• Test to see how distortions are far (on average) from respective

prototypes. This test-suite include analysis of distortions generated

from the prototype, distance of the distortion generated by the near-

est prototype (and farthest) to the prototype, the average of the dis-

tances of distortions, generated by the prototype, from the proto-

type and the average distance, normalized to the average maximum

distant distortion, generated by the prototype, from the prototype

itself.

• Test to see how the samples of each prototype are distorted with

each other at different levels of sigma.
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Figure 12: Twenty-five auditory patterns used as prototypes

From each of them, as for visual prototype patterns, have been generated 24

distortions, using different Gaussian sigma values: the pattern are shown in

sinusoidal grid by MATLAB.

A desirable feature is to have distortions sufficiently distinct to define

a category plausibly made of multiple exemplars but, at the same time,

such as to allow map to categorize them in the same area. Distortions

too different from each other and especially from initial prototype, lead

the map in the training phase to get confused in finding common char-

acteristics; on the contrary, too similar distortions would lead the map to

obtain the best results, but that would neutralize the next Hebbian train-

ing/testing because there are not categories in the input space, but minor

variations of the same patterns (i.e. single dots, no real similar exemplars

of same kinds).

3.2.4 SOMs: training and testing

During the training and testing of the maps (still disconnected) we

tried to find the right balance between learning parameters and desired

results: as mentioned above for input patterns, in order to give concrete

meaning to the results of the experiments conducted thereafter, it was
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necessary to study the conformation of the categories on the map as a

result of numerous attempts to training. One of the most desired features

is to get a map that, at the end of training, assigns to each neuron a differ-

ent prototype: the individual prototype’s distortions should be assigned

to the same neuron (in small quantities) or neighboring neurons. This

result is optimal because it allows us to identify precise category bound-

aries but, at the same time, diversity within the exemplars that define a

category, with the guarantee that categories do not overlap, except for

"marginal" (compared to the boundaries of the respective category) exem-

plar. In order to achieve this effect, an automatic test has been prepared,

capable to try various configurations of learning with specific tests con-

ducted to obtain the desired paramaters: adjust the parameters of a SOM

is a work of art!

To test the SOMs was prepared a test-suite that includes:

• Test to see the performance of the map in terms of global Q error.

• Test to study the activation of the units of the map on prototypes,

which shows the BMU and the Q error for each prototype (remem-

ber that the prototypes are not included in the training, they are

used only once to generate copies) and the number of unique BMU:

if it is equal to the number of prototypes, the map assigns to each

prototype of each category a distinct neuron.

• A table of activation of the units on the map. Given a row k and

a column k of the table, there are shown the number of generated

exemplars starting from the prototype r such that the BMU that is

activated is at a distance y from the BMU of the prototype r. In

Figure 13 we see a screenshot showing this test (useful for under-

standing how the map forms categories) and test maps to find the

right amount of noise (this was a fundamental task in the first phase

of implementation).

3.2.5 Visualization tools

Many of the analyzes during debugging and testing have been com-

pleted through the use of various visualization tools. For example, we
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Figure 13: SOM testing activation table

The image was cut for space reasons: in the original screenshot, there were 100

lines (i.e. 100 prototypes). Each column shows a header (0, 1, 2, 3, 4, 5, 6, > 6)

that represents the distance (in topological terms) between units on the map. So

on line 1, we see information about activation of prototype "1" distortions. Say

that prototype "1" has BMU x. Than, if presented to the map, its distortions will

activate some units. From line 1 we know that 14 of them activate the same unit

x, and 10 activate units which are at distance 1 from x in the lattice of the map.

The final line was cut and pasted with line showing average and a percentage

the number of units that activate the unit prototype and those that turn around

prototype.

have made extensive use of somvoronoi function, an "ad hoc" method

that recreates the Voronoi diagram of the space defined by weight vectors

of the units and displays each category boundary with a different color

on the topologically organized lattice. This allowed us to study the evo-

lution of the boundaries of the categories during training: moreover, the

function is parametric and can be used to color the map with a prede-

fined number of colors, so as to assign the same color to each category

and study how new categories, introduced during the same training, are

topologically organized. We will explore the experiment using training

with incremental introduction of the categories in the final pages of this

chapter and in detail in chapter 4. In the next figures are shown some
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screenshots of tools described above. Figure 14 shows, from left to right,

Figure 14: Auditory SOM Voronoi tesselation for 100 categories.

one column with 100 prototypes from which distortions were generated,

with which the map has been trained: to each of them has been assigned

a color. The colors are not willing "in an orderly manner" because, de-

spite the "names" of prototypes (categories, 1, 2, .., 100) are ordered, the

prototype 2 is no (necessarily) more "similar" to the prototype 1 than it

is the prototype 80. Subsequently, the map is displayed: each neuron is

colored with the color assigned to the prototype for which the distance

"prototype-weight vector" is minimal. In addition, within each unit is in-

serted the name of the prototype that is activated. That means, basically,

distortions of category 45 (generated from prototype 45), will be recog-

nized as exemplars of 45 from 3 neurons in the top left corner of the

map. Some categories have boundaries that delineate a greater number

of neurons than other ones: the origin of this behavior lies in the way

in which the distortions used in training are distributed, in the order in

which they are drawn, and more generally depend from the training of

the map. It’s hard to investigate the exact causes, but we can imagine that

the category 63 has been formed following the presentation of distortions

more "distant" between each other or, again, quite similar to those used

to define the nearby categories. On the right we find a table showing the

relative Euclidean distances between the categories in the map - with a

highlight on the three nearest categories. The picture above, Figure 15,
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Figure 15: Visual and auditory SOM Voronoi tesselation for 100 categories.

shows a view equivalent to that shown previously, with a direct focus

on both maps simultaneously. This view was particularly useful for the

study of the behavior of Hebbian training (or rather, the consequences of

the conformation of the maps on Hebbian training). An additional instru-

ment was designed to debug and test the Hebbian training, in which you

can put the focus on the changes that affect a single category: more on

this and some images are shown in the next section.

3.3 hebb connection and learning by association

3.3.1 Introduction to Hebb learning

Hebbian connections are crucial for the functioning of the model. In-

deed, they allow you to connect the two maps and embody learning by as-

sociation. Before explaining in detail the way in which these connections

between maps are created, strengthened and used to get a taxonomic

response and the ability to fast-mapping mentioned previously, we intro-

duce the meaning they have in the model and how this fits with what

happens in a biological brain. From the point of view of artificial neurons

and artificial neural networks, Hebb’s principle can be described as a

method of determining how to alter the weights between model neurons.

The weight between two neurons increases if the two neurons activate
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simultaneously, and reduces if they activate separately. As Donald Hebb

says in his most influential work ([7]), The Organization of Behaviour: A

Neuropsychological Theory:

«when one cell repeatedly assists in firing another, the axon of

the first cell develops synaptic knobs (or enlarges them if they

already exist) in contact with the soma of the second cell.»

This rule, also known as Hebb rule, is often paraphrased as «neurons

that fire together wire together». The American psychologist Gordon All-

port posits ([1]) additional ideas regarding cell assembly theory11 and

its role in forming engrams12, along the lines of the concept of auto-

association, described in [1] as follows:

«If the inputs to a system cause the same pattern of activ-

ity to occur repeatedly, the set of active elements constituting

that pattern will become increasingly strongly inter-associated.

That is, each element will tend to turn on every other element

and (with negative weights) to turn off the elements that do

not form part of the pattern. To put it another way, the pat-

tern as a whole will become ’auto-associated’. We may call a

learned (auto-associated) pattern an engram.»

It is easy to see how both the Hebb rule and the consideration proposed

by Allport on the learned auto-associated pattern leads to the explanation

of the formation of an associative memory that fits well with the initial

idea to get a more or less faithful simulation of the cognitive process

that binds the words to the categories (in this context, visual, but poten-

tially recognized by any other human sense) that the individual is able

to distinguish. In this scenario, the two SOMs are sets of neurons that are

active simultaneously13, the Hebbian connections bewtween play the role

of synapses connecting the two cortices (i.e. simulated by SOMs) and the

patterns mentioned by Allport are the memories of associations created

11 We talk about it in subsection 2.1.2.

12 An engram is a hypothetical neurobiological element that allow the memory to remember

facts and feelings, storing them as biophysical or biochemical changes in the tissue of the

brain and other nerve structures.

13 During a labeling event, see below in text.
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in all past event, which reinforce or weaken with the experience, accord-

ing to the theory that memory resides precisely in the form of engrams, or

biophysical or biochemical changes in the brain.

We present all the organic ingredients needed to simulate the process of

Hebbian associations. In the next pages we present the process of synapto-

genesis that occurs in the brain and the mathematical formulation of the

model.

3.3.2 The complex synapto-genesis process

«Randomly formed synapses appear to form a substrate for the de-

velopment of circuits that are dependent on environmental input. The

ready availability of billions of unspecified synaptic contacts in the imma-

ture cerebral cortex may be important for the formation of the synaptic

circuits underlying the development of higher cortical functions, includ-

ing mathematical skills, musical ability, and language functions.» Peter

R. Huttenlocher, [9]. In opposition to what was done14 by Mayor and

Plunkett in [21], we introduced random synapses at once (although we

conducted tests with incremental introduction) in our main demo to sim-

plify the process and to study without too much noise the evolution of

Hebbian connections between the two maps.

Synaptic pruning Another neurobiological process that occurs in real

brain is the synaptic pruning: the number of synapses decreases by a

process of elimination of weak synapses. This mechanism is driven by

experience and is thought to minimize energy consumption. As we will

emphasize, this aspect together with the incremental synapto-genesis af-

fects the operation and performance of the model, but also introduces an

additional tuning parameter that makes it even more complex to perform

the tests. «Any modelling endeavour that attempts to replicate aspects

of human behaviour is inherently committed to a set of simplifying as-

14 They model "blind" synapto-genesis, the process of forming synapses at random locations

by linking together only a percentage of randomly picked neurons on both maps, a per-

centage that increases linearly with age, from 1% connectivity to full connectivity after

500 epochs of training.
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sumptions. This commitment is a double-edged sword. On the one hand,

simplification offers parsimony: the fewer assumptions required to ac-

count for the data, the better the explanation offered by the model. On the

other hand, simplification typically involves highlighting some aspects

of behaviour at the expense of others. Furthermore, simplification can

sometimes trivialise explanation.» - Mayor & Plunkett, [21]. Our ultimate

conclusion on the efficiency of association learning is strongly linked to

specific considerations on the training and performance of the maps. As

pointed out also by the authors of the model, this aspect is crucial for

the proper formation of solid Hebbian connections and the attainment of

a sufficiently extensive and precise. In conclusion, despite this process of

pruning is fundamental and our realization of the model also provides for

the possibility to simulate this cognitive process (according to tests con-

ducted by Mayor and Plunkett), to realize quickly and in the time at our

disposal the dynamic expansion of the maps, the new features proposed

presented in chapter 4, we missed the appearance of synaptic pruning,

and we focused on targeted testing to study the progress of the Hebbian

training under fixed conditions.

3.3.3 Implementation and training algorithm

formalization The Hebbian connections are simulated through an

N ·M(= S) matrix where N and M respectively correspond to the num-

ber of neurons of the visual and auditory map and S to the number of

synapses15. To simulate the process of synapse genesis, all S synapses

between the maps were first randomly initialized with a normal distribu-

tion centered on 1√
S

and with a standard deviation of 1√
1000·S . Synapse

amplitudes are modulated according to a standard Hebb rule with satu-

ration. Therefore, synapse weights stay in a physiological range even for

high neural activities. The synapse connecting neuron i from the visual

map to neuron j of the auditory map is computed as follows:

wij(n+ 1) = wij(n) + 1− e
−λ·ai·aj (9)

15 The whole process follows the same formalization proposal in [21].
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where n refers to the index of the word-object pairing and λ(= 10) is the

Hebbian training learning rate16 and ai and aj are the neural activity of

neuron i and j on input pattern n+ 1. We define the neural activity of a

neuron k to be:

ak = e−
qk
τ (10)

where qk is the quantization error (presented in subsection 2.2.2) associ-

ated with neuron k and τ = 0.5 is a normalization constant. After every

word-object presentation (during labelling events), weights are normal-

ized: ∑
ij

w2ij = 1 (11)

so as to model limited synaptic resources.

training algorithm The model first learns to categorize objects

or labels in an unsupervised fashion. Through unimodal presentations,

the maps self-organize and form categories out of a complex input space.

All category boundaries are defined during the unsupervised learning

phase. Object categorization and word-form categorization are thereby

determined during unsupervised learning activities in the model. In the

supervised phase of learning, single cross-modal labelling events need

only to bind the categories on each map. The joint attentional events them-

selves provide the supervision needed in order to generalize accurately

word-object associations. Word learning therefore corresponds to a super-

vised, cross-modal learning activity in the model. Joint attentional events

are mimicked through the simultaneous presentation of objects and their

labels (one pairs for each categories defined earlier) and constitute the su-

pervised component of word learning that is essential for learning the ar-

bitrary mappings between labels and objects. Synapses connecting active

neurons on both maps are reinforced through Hebbian learning, using

Equation 9 and depending on Equation 10. The more maps are organized

in a consistent way, the lower is the quantization error (qe) accumulated

on the matching units that actually respond with greater intensity to the

input pattern presented in (belonging to, say, the category X): this, in case

16 Different from SOM learning rate.
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the neuron i is an attractor of pattern belonging to the category X, leads

to reduce the coefficient of the Equation 10, which is negative, then re-

sults in a more intense activation. This process makes sense because a

lower degree of uncertainty implies a stronger activation of the neuron.

Conversely, for neurons h that are not attractors of patterns belonging to

category X, the values of quantization error (qe) will be greater leading

to a lower activation of the neuron and to a consequent minimum (or

zero) weight increase of the respective connections with the neurons of

the auditory map.

Thus, due to the topographical organization of the maps that takes

place in early development, many neighboring neurons on each map will

be activated by the presentation of an object and its corresponding sound

pattern. Cross-modal Hebbian learning will then take place for neigh-

boring neurons on each map, reinforcing the connections according to

intensity of activation of the various pairs of neurons, intensity linked to

the degree of uncertainty of the neuron and consequently the overall ef-

ficiency of the two maps. Therefore, the association between the paired

object and its corresponding sound pattern will be generalized, automati-

cally building associations between all objects in its category to all sound

patterns of the appropriate type. A single labelling event is thereby able

to induce a taxonomic response with the label extended to all objects of

like type: the novel word is learnt.

After training on cross-modal pairings, we assess the capacity of the

network to extend the association of a presented word-object pair to non-

paired items that belong to the same category.

3.4 hebbian testing

3.4.1 Definitions

In order to assess the performance of the model, it is necessary to

introduce two definitions. The first definition introduces a measure of the

taxonomic response. It may be interpreted as the learnability of a word.

The second defines a criterion for deciding when a word is learnt. All

results refer to these measures.
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Taxonomic factor The taxonomic factor is the percentage of correct

word-object associations, following one single labelling event per category.

So it also approximates the likelihood that a word is learnt following a

single labelling event.

Learned word We will consider a word to be part of the lexicon if

more than 80% of the objects of the appropriate category are associated

with the correct label.

The authors conducted many tests, the first of which aimed to show

how the organization of the maps play a vital role in the performance

of the model obtained after Hebbian learning. For example, on pag. 21

[21], it is shown a graph of the trend of taxonomic factor obtained af-

ter Hebbian training (one single labeling event in category) when this is

introduced at different points of the SOMs training.

We did many tests, the first of which aimed to show how the strength

of the maps play a vital role in the performance of the model obtained

after Hebbian learning. In chapter 4, we will show result of this experi-

ment, conducted using the same connections for each Hebbian training

introduced and showing that old Hebbian connections, developed in the

early stages of SOM training, do not affect the performance of learning

introduced successively on the same maps in which the training is contin-

ued until reaching a better quality (with minor global Quantization Error

because of multiple epochs of training).

3.4.2 Errors’ evaluation

«Although the network is able to generalize single label-object asso-

ciations in a taxonomic fashion after object and label categories are well-

formed on the maps, the same cannot be said for the network during

earlier stages of training. After limited exposure to the visual and object

environments, the network is prone to generalize newly acquired label-

object associations in an inappropriate manner. For example, labels may

be used to identify objects outside of the appropriate category» - Mayor

& Plunkett, [21]. One of the key aspects of Mayor & Plunkett leverage re-
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garding the performance of their model is linked to the results obtained

in the first phase of training, the unsupervised one, in which the two

visual-auditory models are educated. To identify errors of categorization

subsequently made by the model, two types of events are introduced: a

production event when a pattern of activation occurs on the auditory

map as result of the presentation of a visual object to the visual map and

subsequent propagation of activity through the Hebbian connections to

the auditory map. A comprehension event occurs when a word is pre-

sented to the auditory map resulting in a pattern of activation on the

visual map via the cross-modal Hebbian connections. Therefore, there

are two possible tests: production tests test the reliability of the model in

terms of the ability to name the object with the right end shown, tests in

comprehension test the ability to indicate the right object after listening to

a given word. We emphasize indicate because the respective experiment

conducted in the laboratory with real children requires the presence of

2 or 3 objects in a restricted visual scene and the children indicate the

object that is suggested (using voice) from caregivers. In this scenario, the

model does not have a set of possibile choices: what is going to test is

the visual representation of the model recreates for the object of which

it hears the name. However, this makes sense, because it is assumed that

the child, to recognize the object in the visual scene, must somehow recre-

ate an arbitrarily complex object form in his visual cortex and compare it

with the forms that he identifies in the visual scene. For the authors, over-

extension errors arise from confusions on the visual map. Confusions on

the auditory map can be interpreted as insensitivity to mispronunciations

of a word (in production, model pronounces "doll" after seeing a dog im-

age because it confuses pronunciations of the two words) or slips of the

tongue (in comprehension, hearing the word "doll" might lead the model

to incorrectly identify the object dog for the same reason). However, dur-

ing the testing phase, to more accurately isolate faults, we focused on the

production capacity of the model and have identified a fallback for those

identified by the authors. In the next section we introduce our version

of the production-testing algorithm. We would like to emphasize the im-

portance of this algorithm processed to evaluate the performance of the

Hebbian training: the elaboration of possible cases that can occur during
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testing of Hebbian model was the result of an intensive analysis, which

allowed us to isolate in detail the causes of the errors committed by the

model and, consequently, to consider real causes of limitations and try to

overcome them with the experiments presented in chapter 4.

3.4.3 Production testing: a complex algorithm

To understand the algorithm, we must first list some of the conditions

necessary to detect possible cases. Before introducing the pseudo code (in

Algorithm 3), we go to identify all the possible cases in term of "results"

obtained. Precisely, this test plans to present a visual object on the map,

and see what corresponding word is activated on the map auditory, choos-

ing as induced BMU the unit such that the Hebbian connection, starting

from the BMU on visual map, is more intense. As already pointed out,

the errors that the model can make in this scenario are different: the error

may affect the choice of the unit on the visual map (error in image recog-

nition / categorization), the choice of the induced BMU on the auditory

map (error due to the intensity of the Hebbian connections) or both cases.

We might initially think that the three cases are the only possible ones,

however, this analysis does not allow us to distinguish between errors of

over-extension and misinterpretation: however, the combination of these

errors may lead to assess as correct a specific production test on a pre-

sented object, despite this being incorrectly recognized (in visual map).

Suppose we present to our model a visual distortion of a dog picture: it

may be that the model recognizes incorrectly the image as an artifact (i.e.,

a house) and that, simultaneously, choose as induced BMU (always incor-

rectly, due to the strength of the connections Hebbian) a BMU in auditory

map that identifies the word dog. In this circumstance, if we simply look

at the result on the auditory map, we would say that the test production

has been successful, despite the model has made two serious errors!

In fact, the first error lies in having recognized a dog recreating the

representation of a house (it is assumed that the visual encoding of the

artifact house is very different from the visual encoding of a dog), a sign

that the visual map is not well self-organized, and then connected the

house to the name dog, a sign that the Hebbian training was not carried
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out correctly. A similar situation may relate to the showing of a dog and

its visual recognition in a house, with pronunciation of the word "doll".

Again, we have a (big) visual recognition error, that would be accepted as

an over-extension if we looked at only the result obtained on the auditory

map. According to the examples above, we give some formal definitions

of the errors and then we illustrate the algorithm of production test that

analyzes all possible scenarios.

3.4.3.1 Definitions

prototypical bmu When we present a pattern to the visual map,

previously self-organized, a BMU is identified on the map (see section 2.3).

According to the topological organization of the map, we can identify, for

each category c, a prototypical BMU, which is the unit that is mostly acti-

vated if we present to the map the prototype from which was generated

all exemplars of the given category c. We call a prototypical best-matching

unit BMUP (P stands for "prototypical"). For example, suppose we have

created a prototype Dog, from which we have generated 12 distortions.

Subsequently, we trained the map in such a way that recognized exem-

plars of dogs and other animals or artifacts. As shown in subsection 3.2.5,

we can define a Voronoi tessellation on the map, such that a given num-

ber of units will activate for (at least) as many separate exemplars of dogs

seen during the training phase. In an ideal situation the category bound-

aries are well defined, and we can imagine that the prototype pattern of

Dog is recognized from the most central unit in the neuron-area that recog-

nizes the dogs. If we look at the upper part in the Figure 16, we see a map

trained using some distortions of dog, specifically those in the marginal

range shown on the left. Subsequently, the prototype pattern Dog, or the

dog at the center of the polygon shown on the left from which all the dis-

tortions were created, was presented to the map. The map has responded

by providing the BMUP, the colored blue in the center surrounded by

rose. The category Dog recognized by the map is given by all the BMUs

such that the respective weight vector is maximally close to the BMUP.

The topological arrangement of neurons that recognize exemplars of a

given category is not always symmetric and well distributed around the

prototypical unit: the borders of a category depends substantially on how
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training takes place on the map, the order of presentation of the distor-

tions, the degree of distortion of the same and those of other categories.

However, to determine whether the map properly recognizing a generic

dog, it is not necessary to verify that the pattern presented actives exactly

the BMUP of category Dog (call it BMUPDog): given x the BMU activated

by specific dog-pattern, it’s enough to check that the BMUP17 closest to x

is equal to the BMUPDog, as shown in the middle of the Figure 16.

17 Taken from the set of all BMUPs for all categories.
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Figure 16: An explanation about prototypical BMU on visual SOM.

In the upper part, we see category of Dog optimally formed on the map. In the

middle, we see the two scenario in which the right BMU is active: from left to

right, the BMU is equivalent to the BMUP and part of the set of BMUs of

category. In the lower part on the left, we see the prototypical BMUP Dog

surrounded by pink, and around the BMU identifying dogs surrounded by

yellow. On the right, we see three prototypical units surrounded by pink. At the

center, a greenish BMU. When an exemplar of dog is presented to the map and

the greenish BMU is activated, if we consider the prototypical BMUP closer to

the greenish unity, these are three.
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In the lower left corner are shown all correct BMUs: we could say that

the map correctly recognize the visual pattern x of a dog if and only if the

BMU of pattern x correspond exactly to the BMUPdog (surrounded by

rose, the left case in the middle) or is part of the set of BMU recognizing

exemplars of that category (surrounded by yellow, the right case in the

middle). Formally, we say that a pattern is properly defined by a map

using the following formula:

map_resultstrict(x) =

 Correct BMUPclosest == BMUPreal

Incorrect otherwise

with x is the pattern, BMUPclosest is the closest prototypical BMUP

(eventually exactly BMUPreal), and BMUPreal is the real prototypical

BMU of the category which x belongs to, i.e. BMUPdog.

However, we could be more lax and verify that the real prototypical

BMUPDog is part of a set defined by units in a given range of prototypical

BMUPs closer to activated BMU of a given pattern x: in lower right cor-

ner, we see that BMUPDog is included in the set of neighbors categories

(BMUPsreal) in a given range from the central greenish BMU activated

by pattern x. Among them there is also the prototypical BMUPDog de-

sired. In this case, we suppose that the map has correctly recognized the

exemplary because the respective BMU is equidistant from several proto-

typical BMUPs, but is still close to the boundaries of the correct category,

i.e. Dog. The topological radius within which we consider the prototypical

units is limited to 2 in our implementation.

Formally, following this lax definition we say that a pattern is properly

defined by a map using the formula:

map_resultlax(x) =

 Correct BMUPreal ∈ BMUPsclosest

Incorrect otherwise

with x is the pattern, BMUPsclosest are the set of closest prototypical

BMUP in a fixed topological range from BMU activated by pattern x, and

BMUPreal is the real prototypical BMU of the category which x belongs

to, i.e. BMUPdog.

Weaker definition expect to consider not only the best-matching unit

BMU after presentation of pattern x, but also the second and the third
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units maximally active to build the sets of neighbors, allowing flexibility

in categorization task of the map. In the next paragraph, we introduce the

concept of induced BMU.

hebbian connection and induced bmu The matrix of Hebbian

connections (HM) between the two maps is organized as follows: given N

and M neurons on the visual and auditory SOM respectively, the matrix

has dimension N ·M and in the position i, j we find the intensity of the

synaptic connection between the neuron i on visual map and neuron j on

the auditory map18. Fixed a neuron i on the visual map, we define the

induced neuron j on the auditory map such that HM(i, j) ∀j is maximum.

Moreover, fixed a visual pattern x, if the neuron j is the induced auditory

neuron from the BMU in visual map, then we call the neuron j - IMU

(Induced Matching Unit) and the BMUP19, from the neuron j - IMUP.

During a production test, as already said, a visual pattern occurs and

that the neuron induced on the auditory map recognizes the right label

associated with the visual pattern. We can then define these conditions20

useful to understand the algorithm presented later:

• a_condition: BMUVP ≡ BMUVPreal

• b_condition: ¬a_condition∧ dist(BMUVP,BMUVPreal) <= ε

• c_condition: IMUAP ≡ BMUAPreal

• d_condition: ¬c_condition∧ dist(IMUAP,BMUAPreal) <= ε

• e_condition: IMUAP ≡ BMUAPreal

The a_condition is true if the result of one of the implementa-

tion of map_result(x) presented above is "Correct" for pattern x. The

b_condition is true if BMUVP calculated from the BMU of pattern x is

different from BMUVPreal but the topological distance between BMUVP

calculated from the BMU of pattern x and BMUVPreal is less than ε.

18 The numbering of neurons in each map follows a default order, independent from the

topological two-dimensional coordinates.

19 Calculated with definition given in the previous paragraph.

20 V in names is for "Visual" and A for "Auditory".
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For c_condition and d_condition are worth the same conditions: the

only difference is that formulas use as starting IMU and IMUP, on the

auditory map, respectively the one induced from the BMU activated on

the visual map after pattern presentation and the prototypical auditory

one calculated as say above. The last condition, e_condition, is similar

to c_condition: however, it refers not to the real (right) category which

the pattern belongs to, but to the category which it belongs to according

to the map result. That’s why the there is an over-line on IMUAP: it refers

to the prototype defined by the right or eventually wrong [but similar to

the correct-one] category assigned to the pattern. For example, when a dog

is shown on the map, and it is categorized as a cat, the c_condition is

true if the BMU activated on the map is associated with the word dog,

the e_condition if the BMU activated on the map is associated with the

word cat.

Indexes

Regarding the above conditions and the following algorithm, some

variants have been developed taking into account the first x Matching-

Unit more active following the presentation of the visual pattern and /

or by examining the first y Hebbian connections stronger than the oth-

ers. Something about these variants was already said in the subsubsec-

tion 3.4.3.1, during presentation of prototypical BMU: we can say that

the algorithm remains unchanged, and it is possible to build four sep-

arate indices evaluation. The first of them is the one that identifies the

statistics by exploiting the conditions taken into consideration (the most

restrictive). The second looks at the first 3 BMU maximally active at the

presentation of a pattern: the conditions could easily be modified and

extended transforming some equivalencies in inclusions checks from set

theory. The third index looks only at the BMU but treats 3 Hebbian con-

nections stronger. The fourth and final index considers 3 BMU and 3

Hebbian connections stronger for each of them. For each of these four in-

dices, there is the taxonomic response indicator that, in accordance with

what is established previously and in a similar manner to what was done

by the authors, corresponds to assess whether at least 80% of the pairs

presented for a given category are correctly associated (using one of the
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four configurations of testing). The four indicators are then expressed as

a percentage of the number of categories learned: it goes without saying

that the indices less restrictive tends to get a higher value because they are

loose in assessing any errors made by the map. Unless specific directions,

from now on we will refer to the performance obtained by the process

of production Hebbian testing as to the result obtained by making use

of the second index (and its indicator expressed as a percentage of the

number of categories learned). The process of training and testing can be

done in multiple configurations: In this chapter, we presented the foun-

dation through which they were conducted the first tests. We will return

to some specific configurations related to the techniques of training and

testing Hebbian in chapter 4.

Finally, the production testing algorithm is presented using defined con-

ditions:

Algorithm 3: Production test algorithm

Data: Complete Hebbian Testing set

Result: Percentage of classified errors

foreach couple_test ∈ TestSet do

if a_condition∧ c_condition then

corrects += 1;

else if a_condition∧ d_condition then

slip_of_tongue_error += 1;

else if b_condition∧ e_condition then

/* due to categorization error */

over_extension_error += 1;

else if a_condition∧ e_condition then

/* due to association error */

over_extension_error += 1;

else

casual_errors += 1;

end

return stats;
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According to the pseudo code shown, we analyze the possible scenar-

ios in which it can be concluded the test production of an image on the

model. Consider the case in which a dog is shown to visual map of the

model: we want the model to assign the right label of shown exemplar. In

a real scenario, this experiment is equivalent to ask a child the name of

the animal that is shown, in this case a dog, as shown in Figure 17.

Figure 17: Production test in a real scenario.

The tests conducted on the model allows us to do some extra consid-

eration: in a real scenario we can not see the mental representation of the

image seen by the baby. In other words, we can not tell whether the image

of the dog shown to the child physically face the category dogs that the

child has: we can understand if this happens only on the response given

to us by the child, however, if your child makes a mistake, we are not able

to assess directly and analytically if the mistake is due to a categorization

error or an Hebbian training error (bad learned associations). However,

in our model it is possible to analyze these two errors separately: this is

the reason why the test conducted on the model provides more possible

cases, in accordance with what said in the beginning of the section.

For ease of viewing, in the next schemes we will not distinguish be-

tween the two scenarios of activation of the BMU presented previously:

the BMU will always appear as equals to the BMUP, however, the reason-

ing proposed are also valid in case the BMU activated is part of the set

of BMU that are activated by presenting other exemplars of the given cat-

egory. Particular attention should be paid in Hebbian connection shown:

the strongest link are not considered to be the one which link the BMUP

to the auditory units, but it’s always chosen from the BMU activated by

the pattern (which in the drawings is always shown as equivalent to the

BMUP, that’s why the warning). The two real-world scenarios shown in

the Figure 18 are then made to collapse in a more compact display in
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which no account is taken of the units that surround the BMUP prototyp-

ical.

Figure 18: Real BMU activation scenario collapsed in a simple visualization.

In Figure 19 is shown the legend to understand all cases showed after.

Figure 19: Legend for production test examples.

So, we show the most interesting scenarios in which the model does

not commit a casual error.

• Case 1: In Figure 20, an exemplar of dog never seen during the train-

ing phase is shown to the visual map. One unit, the BMU (call it x),

is activated more than others. It is checked that the SOM recognizes

the pattern as belonging to the category of the dogs, as said above.
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Subsequently, the BMU induced k in auditory SOM is selected be-

tween M auditory neurons such that:

k = max(HM(x,m),m ∈ 1..M (12)

or rather, selecting the one for which there is greatest activity in-

duced (synapses with higher weight). Then it is checked that the

prototypical BMU nearest to the one induced (again, see above) rec-

ognizes the sound patterns corresponding to the name of shown

object, in this case a dog, always according to the technique used on

the visual map. In this case, the production test is successful.

Technically, a dog is shown, then it’s seen as a dog by the model and

attached to the label dog and dog is returned as a label for the object

shown. This case is the one in which a_condition∧b_condition is

true.

Figure 20: Test production through connections Hebbian: case 1

• Case 2: In Figure 21, an exemplar of dog is shown, then it’s seen as

a dog by the model, attached to the label doll and doll is returned

as a label for the object shown. Technically, a dog is shown, then it’s

seen as a dog by the model and attached to the label doll and doll is

returned as a label for the object shown because the two words dog

and doll are similar: during the Hebbian learning, the connections

between the visual units that distinguish dogs and auditory units

that distinguish the term dog and doll were fortified a lot because of

the confusion between the two terms on the auditory map. The au-

thors call this type of error due to confusion on the map sound a slip
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of tongue. This case is the one in which a_condition∧ d_condition

is true.

Figure 21: Test production through connections Hebbian: case 2

• Case 3: In Figure 22, an exemplar of dog is shown, then it’s seen as a

dog by the model, attached to the label cat and cat is returned as a

label for the object shown. This case can be discussed: we suppose

that the authors of the original model are of the view that this case

and the next one are considered cases of over-extension error. Con-

ceptually, if we look at the result on the auditory map, the word Cat

is over-extended to an exemplar of dog. To ensure that this category

is actually over-extended, we should study the result of showing

a high enough21 number of exemplars of cat. So the association is

wrong not because the model confused a dog with a cat but because

it associated to a dog (properly recognized) the label cat! It hap-

pens that the model makes a mistake of over-extension due to an

Hebbian association error and not due to an (visual) categorization

error. This case is the one in which a_condition∧ e_condition is

true.

21 Such that we can say that the model has correctly learned to associate the word Cat to the

set of cats.
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Figure 22: Test production through connections Hebbian: case 4

Distinguish these two cases can allow us to understand what is the

major cause of errors of over-extension in the model (error of cat-

egorization or association), especially during the experiments with

maps evolving: pay attention to the last case we highlight.

• Case 4: In Figure 23, an exemplar of dog is shown, then it’s seen as a

cat by the model, attached to the label cat and cat is returned as a la-

bel for the object shown. This is an over-extension error because we

have over-extended the category Cat over a few examples of dogs: in

practice, the confusion on the visual map between the two categories

results in an error in the accomplished association, and an exemplar

of dog, actually perceived as a cat, is confused for a cat. The associ-

ation is right, but the visual categorization is wrong. In this case, it

happens that the model makes a mistake of over-extension due to a

visual categorization error and not due to an Hebbian association

error. This case is the one in which b_condition∧ e_condition is

true.
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Figure 23: Test production through connections Hebbian: case 8

All the remaining scenarios are considered as casual error (more fre-

quent errors in the model, according to our and authors experiments). In

the next section we will discuss about the model in action in three distinct

demo.

3.5 model in action : strengths and weaknesses

The last section of the chapter is divided into two parts, each of which

introduces a specific testing-configuration for the model or demo. In par-

ticular, in the first demo (subsection 3.5.1) we show the generation of pro-

totypes, the training of the two maps and the results obtained in both, pre-

senting some of the instruments implemented to see clearly the topologi-

cal structure of the categories created. The second demo (subsection 3.5.2)

show the classical Hebbian training suite with particular attention to the

tools prepared to see an increase in matrix weights and the results ob-

tained with well-trained maps.

3.5.1 Demo 1: Visual and auditory performance

The first phase of testing consisted in analyzing the performance of

the two maps. As mentioned previously, setting the training parameters

of the maps is a difficult task and there are no clear rules to follow. Many

tests have been made to achieve a sufficiently stable balance to make inter-
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esting the results of experiments conducted later with Hebbian training.

Before specifying the parameters of training maps, we provide some data

on the inputs used for testing and training. Specifically, using the method

described in subsection 3.2.1, 100 visual prototypes were created fairly

evenly distributed in space input. Some statistics on these prototypes are

shown in the Table 1 below.

Stats description Value

Minimum distance reached between visual prototypes 24.21

Maximum distance reached between visual prototypes 75.78

Average distance reached between visual prototypes 51.68

Pseudo-upper bound22 of a reachable distance between two prototypes 123.04

Average distance normalized reached 42%

Table 1: Visual prototypes general stats about reciprocal Euclidean distance.

For 100 auditory prototypes, the same statistics are shown in the Table 2

below.

Stats description Value

Minimum distance reached between auditory prototypes 13.11

Maximum distance reached between auditory prototypes 30.98

Average distance reached between auditory prototypes 21.46

Pseudo-upper bound of a reachable distance between two prototypes 47.62

Average distance normalized reached 45%

Table 2: Auditory prototypes general stats about reciprocal Euclidean distance.

The performance of the map have not been evaluated both in terms of

the topological quantization error or the error, rather in terms of the abil-

ity to assign to each category a separate unit (BMUP)23. The initial task

involved a simulation as faithful as possible to the conditions in which

Mayor & Plunkett worked: trains a map with the right amount of noise

is a complex task. We can numerically provide a simple explanation of

23 The exemplars used during training are associated with some units topologically close to

the prototypical BMU.
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the problem. Suppose we have a grid of 25 · 25 neurons in both maps. We

focus our attention on one of the two maps. We have 100 prototypes. We

would like the map to assign about 100 separate units to each of them

(upon completion of training phase using from the distortions, as the pro-

totypes are never used neither in training nor in testing). If the topology

makes use of hexagonal lattice, a neuron has on average 6 neighbors: it

is not true for neurons at the edges, so we approximate this number to

5. We have a total of 625 neurons, 100 of which are used to define the

prototypical units (what we previously called BMUPs). So there remain

525 "unused": the ideal situation is that at least the 6 neighbors of each

prototype units are enlisted to identify exemplars (hopefully sufficiently

distorted) of the category defined by prototype. So, set 100 units, 500 units

have to be enrolled. That leaves "unused" 25 of the 625 total units. Since

many random processes are used throughout the entire process, from the

generation of prototypes and samples, through the alignment of the ini-

tial weights of the maps and the technical and the order in which the

samples are extracted in every epochs of training, we understand how

difficult it is to study the trend of the training (remember that training is

also linked to several parameters arbitrarily defined including neighbor-

hood, learning rate and number of periods of training) in order to correct

the shot and get the desired result.

Performances related to the capacity of categorization on exemplars

were measured testing the ability to distinguish fairly accurately but still

leaving a certain amount of noise on both the visual and auditory map.

To calculate this type of statistics, we have been individually examined

categories, and maps have been tested in terms of position in the lattice

assumed by BMU activated for each exemplars. More details about how

was done this type of test is provided in subsection 3.2.3 and in caption of

Figure 13. The results obtained with regard to the visual map are shown

in in Table 3:

Stats description 0 (≡ BMUP) 1 2

Average number of visual exemplars recognized by unit at distance k 18 5 1

Percentage of visual exemplars recognized by unit at distance k 75% 23% 1%

Table 3: Average visual categorization result and noise in the map.
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The same tests conducted on the map auditory reported the results

shown in Table 4:

Stats description 0 (≡ BMUP) 1 2

Average number of auditory exemplars recognized by unit at distance k 20 4 0

Percentage of auditory exemplars recognized by unit at distance k 82% 16% 0

Table 4: Average auditory categorization result and noise in the map.

In Figure 24 we see instead the arrangement of BMUP in the visual

and auditory map, left to right. This has been trained for 1000 epochs,

taking advantage of the sequential training function24, with the learning

and neighborhood parameters specified immediately below the image.

Figure 24: Visual BMUP disposition on visual map.

The learning rate are: 0.8/(1+ (i/200)). The neighborhood radius are

linearly scaled in the range 2− 1.5. As regards the auditory map the learn-

ing rate are the same, the neighborhood radius varies linearly in range

1.7− 1.5. We will not speak of the performance of these maps in terms

of QE as we will discuss about this index in the next two demos and

in detail the chapter 4, which reported the performance of incremental

training and discussion about its correlation with taxonomic factor.

24 som_seqtrain, available by the SOM Toolbox - SOM Toolbox

http://www.cis.hut.fi/somtoolbox
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3.5.2 Demo 2: Hebbian classical training

Hebbian training standard has been tested first: many exemplars were

initially used to train connections in each category, but the most impor-

tant tests carried out and described in the next chapter, was taken into

consideration the strict condition of training that provides a single label-

ing event with a single word-object couple for each category, as it is the

condition that best fits with the emergence of the taxonomic response

through fast-mapping, a condition which has been thoroughly discussed

in subsection 3.1.2 and more likely that simulates a real situation of asso-

ciation learning. The result, shown in Table 5, was good:

Stats description Absolute count % of categories learned25

Correct couples using 1 BMU and strongest Hebb connection k 877/1200 70%

Correct couples using 1 BMU and 3 strongest Hebb connection k 947/1200 77%

Correct couples using 3 BMU and strongest Hebb connection k 944/1200 78%

Correct couples using 3 BMU and 3 strongest Hebb connection k 1017/1200 84%

Table 5: Result of production test after 1000 epochs training with 12 exemplars

for each categories, and one-shot labelling event (hebb training) for each

categories, tested with others 12 exemplars for each categories (different

from the ones used for maps training)

3.6 summary

In this chapter we introduced many fundamental concepts that have

marked the entire course of the thesis. First, the generation of the inputs, a

task far from simple, in which the graphic tools created for analysis of the

performance of the maps (Voronoi tessellation) resulted to be very useful.

Second, the presentation and re-implementation of the model, which ulti-

mately results to be full of parameters with vast domains: for this reason

and others, the development of the model was a step as interesting as del-

icate, because we had to exclude from trials all configurations not useful

for the achievement of the purpose26, and debugging the code repeatedly

for a long time. Finally, the first complete test of the model, which have

brought to light discrepancies in the formal definition of over-extensions

26 Overcome a particular limit, described in chapter 4.
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errors during production tests: these have allowed us to study the prob-

lem in depth, and implement an efficient and accurate algorithm to test

performance during production tests, then used for the second and final

part of the thesis. All the work done up to this point has been useful to the

understanding of the model and its functioning in its original version. In

the next chapter, we will introduce new training techniques designed to

address the limitations of the model and the changes made to the model

in order to successfully support the new forms of learning introduced: re-

spectively, we are talking about incremental training and the introduction

of Growing Self-Organizing Maps as both visual and auditory models.





4
O V E R C O M I N G T H E L I M I TAT I O N S

Contents: in this chapter, the evolutionary nature of the model become

more pronounced, with introduction ofincremental trainings conducted

to simulate the behavior of the inclusion of new categories, with varia-

tion of the dynamic training set when the phase of learning; adapta-

tion of Fritzke expansion technique and introduction of Growing SOM

within the original model presented in [21]; dynamic introduction of

Hebbian synapses as a result of the introduction of new neurons dur-

ing the Growing SOM training associated with incremental (associative)

Hebbian-learning; introduction of development of variants of growth tech-

nique, theoretical evaluation of alternative topologies; analysis of the re-

sults of comparison tests between arbitrarily large static maps and maps

that grow.

In this chapter we present the results obtained by some special tests

conducted on model to evaluate in detail the causes of the limitations

highlighted by the authors and identified by ourselves: next, we will show

the techniques that we have developed to overcome these limits, with par-

ticular attention to dynamic expansion of visual and auditory SOM. In

detail, in section 4.1 we talk about model limitations, in section 4.2 we

will show the results of spaced out incremental tests conducted during

the training of maps, including the spaced out incremental introduction

of categories during the phase of learning and the consequences of the

extension of the SOM organization phase. In section 4.3, we will present

the theoretical assumptions investigated previously by Bernd Frizke in [5]

for the expansion of SOM with topology organization similar to that used

67
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in our model and the results he has achieved. In section 4.4 we show an

adaptation of the technique proposed by Fritzke for the hexagonal topol-

ogy of our model as an alternative technique to the dynamic expansion

of maps, showing how this leads to a decrease of the quantization error

and, consequently, exceeding the limit of the number of words learned by

model previously proposed by Mayor & Plunkett in [21]. In section 4.5,

we will present the results obtained by training using static maps, com-

pared with the same training conducted with maps that can evolve with

the previously proposed technique, demonstrating the crucial role played

by the size and topology of the maps in the model. In the last section, as

usual, a brief conclusive summary of what was said before.

4.1 limitations of the model

The authors identify many limitations in the model: we list some of

them, then we identify which of these limits have been the subject of

interest in this work.

4.1.1 Visual input pattern and formation of the categories

For simplicity, the authors have created pattern consisting of random

configurations of black dots. Although these random dot figures are in-

tended to capture the sparse, natural clustering of many object categories

observed in the real world [23], it is not the case that all categories honour

these sparse clustering criteria [21]. Obvious exceptions include tools, fur-

niture, games and other artifactual inventions: furthermore, no analysis

about scale, rotation and position of visual patterns (as done by P. Paplin-

ski using Radon transform in [26]), was taken into consideration, not to

divert too much from the main objective.

4.1.2 Auditory input pattern

The model ignores the role of time and the incremental nature of

word-form processing, nor does it compute any abstract representations

of phonetic or phonemic constituents of the speech signal [21]. Another
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aspect of which we have not cured regards the generation of sound pat-

terns, for which a generation technique was used like that used for visual

pattern.

4.1.3 The inability to learn new words

The inability to learn new words after the visual and auditory maps

have stabilized also compromises the plausibility of the model. This is

the limit of which we have addressed here: in other words, the model is

not capable of learning new words if they are presented after the stage

of categorization required in the maps. To overcome this limitation, the

authors suggest that a potential solution is to employ hierarchies (or het-

erarchies) of maps in both the visual and auditory pathways of the model,

mimicking aspects of the organization of visual and auditory cortex. On

the other hand, we have acted differently from what is suggested, making

three distinct fundamental steps: the first concerns the dynamic change

of the training set during the training map, designed to simulate the in-

cremental introduction of exemplars from new categories of maps during

training, to study the presentation of new "words" in the model and then

exceed learning limit mentioned before; the second, concerns the intro-

duction of Hebbian training during SOM training, to make less rough

the separation between the organization phase (involving SOM) and Heb-

bian training (involving both SOM and synapses between them) present

in the original model, in order to make the training for association more

psychologically plausible; the third consist in introduction of Growing

SOMs to simulate visual and auditory cortex. In order, the incremental in-

troduction of the new categories during the standard training of the SOM

does not lead to good results. Some tests conducted with the spaced out

introduction of categories, in which these are presented to the maps dur-

ing training, have brought to light an important limitation in the way they

are recognized: iterating the process of insertion and maintaining fixed

the size of the maps, latter become saturated and begin to overwrite the

previous knowledge about the old categories learned to store new cate-

gories presented later. Conceivably, changing the training set during SOM

organization phase is a very delicate step, that can be accomplished in dif-
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ferent ways: we have identified a number of dynamic change strategies of

exemplars-set, which will be discussed in depth in section 4.2. Regarding

the Hebbian training introduced incrementally during the SOM training,

we recorded excellent results regards: the formation of Hebb synapses

introduced early and the maintenance of the same do not affect in any

way the formation of synapses introduced by subsequent trainings, when

the maps have achieved a better degree of categorization. We’ll talk more

in detail about this aspect in subsection 4.2.4. These two initial steps have

confirmed the need to have the basic neural structures able to evolve. This

coincides with the third step, the introduction of Growing SOM, which

we will discuss in the second part of the chapter, precisely in section 4.3.

summary The result of experiments conducted presented in the fol-

lowing pages retrace the steps made. To summarize, in order we will

touch on three key points:

• Step 1 - Presentation of an analysis of the behavior of SOM following

the spaced out introduction of the categories during the training

phase;

• Step 2 - Some considerations about the Hebbian training introduced

incrementally and, subsequently, an analysis of the performance

achieved (in terms of taxonomic response) from the whole model

in the presence of both spaced out introduction of the categories

and incremental Hebbian training;

• Step 3 - The last and more important feature introduced: the cre-

ation of two Growing SOMs, able to adapt to the described forms

of training, created for overthrowing the limits on the number of

learned categories. Some preliminary tests lead us to believe that

the model is able to automatically adapt to the training set which is

subjected, leading to strong performance advantages in the presence

of the form of incremental training described above, most likely the

type of "training" which is subject a child in the first twenty-four

months of life;
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4.2 stress-tests aka how-to-put-in-trouble a kohonen map

In the next pages, we talk about Step 1 of three mentioned, or SOM

training with spaced out introduction of categories.

4.2.1 An alternative way to see things for the first time

Imagine to impersonate a child a few months old during a circum-

stance of real learning: how could you realize this situation? There is no

accurate way to answer this question, because there is no defined way to

wrap a learning event and isolate it from all the other events that perme-

ate the life of a child. We think that the importance of a simulation lies

in shaping a likely situation, the most similar to what may occur in the

real world. Regardless of how the model organizes itself, the same con-

cepts of training and testing should be rethought: in a real context, there

is no separate learning phase, after which we are able to use forever the

concepts learned. In this sense, we can learn the meaning of a word and

forget it, and then learn it again later, maybe not even remember having

already saved in the past the word-meaning association. This is not to say

that we tend to forget everything we learned in the past; however, it is

reasonable to think that we are continually subject to recurring stimuli

and, occasionally, new ones. Based on this idea, we tried to simulate a

form of incremental learning events more likely the ones to which we are

subject in everyday life: to achieve this, we have worked about how new

objects are involved during the training phase. Technically, we can not

break the phases of training and testing in our models. We can introduce

some phases of testing during training, to study the trend: however, this is

not the idea that realizes more precisely the scenario described above. To

simulate the occurrence of events that lead us to perceive new stimuli, we

must vary the set on which training takes place: we decide to investigate

when certain objects are seen for the first time. The first time in which we

see new objects are not temporally limited to the first years of life, or other

life-limited periods: these first times are distributed in no particular order,

with different distribution, during all life. The new stimuli, occasionally

with old stimuli already categorized, after being involved in the ongoing
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process of categorization, will give rise to new categories, or specializa-

tion / generalization of the previous ones1. As already said, changing the

set of training during the SOM training does not lead to good results.

It’s clear that to full simulate the scenario where new stimuli are inserted

randomly in the learning phase, it is necessary to have a structure that is

able to adapt (in complexity) to the problem. What we want to emphasize

is that, regardless of the mental model (theoretical or physical) through

which we see the ability to categorize, although limited to a specific type

of stimulus (i.e. visual or auditory), the cognitive structure at the base

will necessarily be forever subject to new stimuli, never seen, and must

be able to adapt and possibly evolve itself, creating new computational

units (in this scenario, enrolling more neurons), to categorize and store

new stimuli.

4.2.2 A dynamic training set

many ways to introduce new categories There are many

ways to vary the training set during learning. The initial training was

set up using standard 12 distortions for each categories, chosen randomly

among the 24 generated from each prototype. In total, to train maps to

recognize 100 categories, we have a training set of 1, 200 exemplars. The

variants analyzed include the spaced out incremental, not incremental

and semi-incremental introduction of categories.

• Incremental way: learning with spaced out incremental introduction

expected to commence training (suppose a total of 1000 training

epochs) making use of a training set of 12 exemplars per 10 cate-

gories. Each 100 epochs of training, the training set is enhanced by

introducing an additional 120 exemplars from 10 other categories.

So, for the first 100 times of training, the map is trained using 120

exemplars, from epochs between 100 to 200 are used 240 exemplars

1 The concepts of specialization and generalization are very thin and we will talk about

these in more detail in the final part of the chapter. During this work, we have not taken

care of this aspect but we assumed some future development scenarios: we will present

some alternatives explored to investigate these two aspects of the capacity of categoriza-

tion in more detail in section 4.
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(120 new +120 old)... up to the epochs slot 900− 1000 in which all

exemplars are used, precisely in 1080 already seen at least once, and

120 from the latest 10 categories introduced.

• Not incremental way: learning with spaced out not incremental in-

troduction expected to commence training (suppose a total of 1000

training epochs) making use of a training set of 12 exemplars per 10

categories. Each 100 epochs of training, the training set is replaced

by introducing 120 new exemplars from 10 other new categories. So,

for the first 100 times of training, the map is trained using 120 exem-

plars, from epochs between 100 to 200 are used 120 exemplars (120

new)... up to the epochs slot 900− 1000 in which 120 exemplars are

used, from the latest 10 categories introduced.

• Semi-incremental way: learning with spaced out semi-incremental

introduction expected to commence training (suppose a total of 1000

training epochs) making use of a training set of 12 exemplars per 10

categories. Each 100 epochs of training, the training set is replaced

by introducing an additional 120 exemplars from 10 other new cate-

gories but keeping x (for example, 4) exemplars for each categories

seen in the previous epochs slot. So, for the first 100 times of train-

ing, the map is trained using 120 exemplars, from epochs between

100 to 200 are used 160 new exemplars (120 new +40 old, 4 for each

category)... up to the epochs slot 900− 1000 in which 480 exemplars

are used, precisely in 360 already seen at least once in the previ-

ous epochs from 90 categories, and 120 from the latest 10 categories

introduced in the slot 900− 1000.

The categories may of course be introduced in a spaced out manner

by making use of a finer grain: for example, 2 new categories could be

introduced every 20 epochs of training2. However, the way in which the

training takes place depends not only on how the training set varies: as

we mentioned in the end of chapter 2, there are two distinct phases during

the training of a SOM. In the first one, basically half of epochs used dur-

ing the entire phase of training, the update of the weights is more intense:

this is due to the fact that the learning rate and the neighborhood radius

2 1000/20 = 50 slots, 100/50 = 2 new categories for slots
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have higher values, consequently, the number of units involved and the

changes made to individual values in the weight vectors are greater than

during the second phase. The behavior of the SOM after training con-

ducted with spaced out introduction of new categories, and consequently

the outcomes of Hebbian training, are different depending on the changes

that occur in the training set used. In the next three paragraph, we will

show and discuss the progress of the quantization error obtained respec-

tively from spaced out incremental, not incremental and semi-incremental

categories introduction during standard SOM training.

incremental way In Table 6 is shown how the training proceeds

with spaced out incremental introduction of categories. As we can see the

quantization error tends to increase: this is natural. The training set keeps

growing, and every 100 epochs 120 exemplars from 10 new categories

are introduced. The map is initially able to adapt so as to categorize ade-

quately also the new categories, but performance drops after presentation

of new categories in first epochs slots.

Epochs slots Quantization Error

0-100 ≈ 12

100-200 ≈ 14

200-300 ≈ 16

300-400 ≈ 18

400-500 ≈ 19

500-600 ≈ 20

600-700 ≈ 21

700-800 ≈ 22

800-900 ≈ 23

900-1000 ≈ 23

Table 6: Quantization errors during standard SOM training, with spaced out

incremental categories introduction every 100 epochs, with 12 exemplars

for each categories
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As we will see later, this behavior will impact negatively on the perfor-

mance achieved by the model as a result of the phase of Hebbian learn-

ing. The performance of the map affect the Hebbian training especially

in function of uncertainty, namely the quantization error, expressed by

the map on single BMU which is activated during the presentation of a

word-object couple: the map is more confused, more connections created

will be weak, and it will blend more easily when they are used to induce

the activation on the corresponding map, during both production and

comprehension tests.

not incremental way If we look at the column of Table 7, we see

the trend of the quantization error with a spaced out not incremental in-

troduction of categories. The behavior is the same than before, because the

Epochs slots Quantization Error

0-100 ≈ 12

100-200 ≈ 13

200-300 ≈ 14

300-400 ≈ 14

400-500 ≈ 14

500-600 ≈ 14

600-700 ≈ 15

700-800 ≈ 15

800-900 ≈ 16

900-1000 ≈ 31

Table 7: Quantization errors during standard SOM training, with spaced out

incremental categories introduction every 100 epochs, with 12 exemplars

for each categories

training set is literally replaced each time. However, if we analyzed the

behavior of the whole model in action (we are talking about production

testing after the introduction of the Hebbian training), we would notice

that the performance on the learned categories are opposite: the mistake,

which in the previous case was accumulated more easily on the latest cat-
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egories, in this case tends to increase more and more on the categories

learned in the first epochs slots, because the boundaries of them become

more and more blurred after the introduction of new categories.

semi-incremental way Quantization error trend spaced out semi

incremental categories introduction is shown in Table 8. The overall be-

havior is already known: the semi-incremental way allows the maps not

to overwrite at all the inherent knowledge about old categories, leaving

spaces to new categories to be stored. The quantization error of the maps

Epochs slots Quantization Error

0-100 ≈ 12

100-200 ≈ 13

200-300 ≈ 15

300-400 ≈ 17

400-500 ≈ 18

500-600 ≈ 20

600-700 ≈ 21

700-800 ≈ 22

800-900 ≈ 23

900-1000 ≈ 24

Table 8: Quantization errors during standard SOM training, with spaced out

incremental categories introduction every 100 epochs, with 12 exemplars

for each categories

is approximately similar to that committed with the not-incremental intro-

duction, however, the tests conducted after the Hebbian learning demon-

strate a general increase in learning performance categories, with results

that are positioned more or less in half of those obtained along the spaced

out incremental introduction (additive) and spaced out not incremental

(with whole replacement of the training set). Based on this result, we de-

cided to run a test by increasing the phase of organization: the idea is to

force the map to store in a more incisive way new categories, at the cost



4.2 stress-tests aka how-to-put-in-trouble a kohonen map 77

of losing the ability to categorize some of the exemplars seen in previous

epochs.

4.2.3 A test with expanded organization phase

We decided to use the same training parameters calculated using an

interval of 1000 epochs training with values similar to those used before,

by restricting the use of the first 1003 values of learning rate and neigh-

borhood radius for each slot of training epochs: this allows us to reset

the descent of the learning rate and neighborhood radius, conducting a

parametrically identical training for each time slot of 100 epochs. The

first test that we conducted was done using non-incremental spaced out

introduction of the categories. This combination, consists in training the

same map with the same training parameters using 120 exemplars from

10 categories, for 10 times, each time for 100 epochs and each time using

the same training parameters (high learning rate / neighborhood radius)

and replacing the 120 exemplars used in every previous 100 epochs with

the new exemplars from 10 new categories introduced. The results are

very poor: using the training parameters identical to those used in the

first 100 epochs take the map to forget the old categories, which are si-

multaneously seen only with the categories belonging to the same set of

categories introduced together. The test conducted later similar to the one

described has involved the semi-incremental techniques of categories in-

troduction. The idea is to allow the map to learn new categories with a

stronger form of learning, while continuing to see some of the distortions

previously learned. The results are best lightly, but the restriction to 100

training epochs for each bunch of categories, despite the injection of some

exemplars (i.e. 4) for past categories, is not an optimal training condition.

Random mode Before passing to the expansion of the maps, a last

test was conducted by placing a random number of exemplars for a ran-

dom number of categories, for 10 times, for 100 epochs training for each

3 The phase of organization actually extends at least up to the epoch 400, however, we

conducted some tests using 500 training epochs, but the organization is too strong and

the map forget permanently thing has no way of reviewing in next training.
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time, incrementally4. The result leads the model to have stable (poor) per-

formance.

following In the next pages, we talk about Step 2 of three men-

tioned: the behavior of incremental Hebbian training during SOM train-

ing. This step is critical and we need to talk about it separately because

the tests conducted later will use the spaced out semi-incremental intro-

duction of categories and Hebbian training introduced incrementally to

simulate the introduction of new words. The last ingredient will be the in-

troduction of Growing-SOM, which will make this kind of training, more

similar to that of a real context, effective.

4.2.4 Incremental Hebbian training

As mentioned at the beginning of the chapter, the second step taken to

overcome the limits of learning new words is related to the introduction

Hebbian learning during the SOMs training. To understand the learning

behavior of incremental learning by association, forget for a moment the

talks concerning the spaced out introduction of categories mentioned in

the previous pages. Suppose we have available the two SOM and perform

a standard training, similar to what was done in the last demo discussed

in the previous chapter (subsection 3.5.2). We define the Hebbian training

incremental when it is introduced every x epochs during the training of

the two SOMs, keeping the previously created synaptic connections. This

type of training was conducted, as already mentioned, to overcome the

strong separation (not present in a real learning context) between the two

phases (SOM training and Hebbian training), but also and above all to ver-

ify another important aspect of the model: the ability to not be influenced

by synaptic associations prematurely created, between categories still not

well defined, during subsequent training, in which the associations are

established between developed (and tended to be much better) defined

4 So as to allow the map to see at least once at least one example for each category.



4.2 stress-tests aka how-to-put-in-trouble a kohonen map 79

categories in both maps. To illustrate this phenomenon, we conducted a

test5.

in detail In particular, every 100 epochs of training of the two maps

we introduce Hebbian training. For 10 consecutive times, at a distance

of 100 training epochs, the same Hebbian connections matrix is used to per-

form the training, and subsequently is used to accomplish the same pro-

duction test conducted in the subsection 3.5.2. The mathematical model

justifies the formation of stronger connections after a greater number of

map-training epochs: the activation of neurons and the intensity with

which the synaptic connections present between them are reinforced are

linked, in reverse, to the quantization error supplied from the map for the

BMU selected. Quantization errors, with time, decreases: in accordance

with what said above, the maps respond with less uncertainty as they ar-

rive at the convergence phase, and this aspect is reflected in the establish-

ment of stronger synaptic links. This explains the reason of the success of

incremental Hebbian learning: associative learning, if introduced prema-

turely, has bad performance but synapses created in the early stages are

dislodged from synapses stronger in subsequent stages of training. Prac-

tically, the old synapses lose appeal in the model, and although remaining

active, the connections prematurely established between neurons not-yet-

fully-trained will be no longer selected in the subsequent production test-

ing, because there are other stronger synaptic connections (the youngest

ones). The results, for each 100 epochs, of Hebbian training and produc-

tion testing introduced without erasing the previously learned synapses

are shown in the Table 9.

5 This experiment was conducted in a similar manner also by Mayor & Plunkett in [21], but

not incrementally.
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Stats description Visual Q. Error Auditory Q. Error Absolute count % of categories learned6

Epoch 100 k 26.4 11 435/1200 36.5%

Epoch 200 k 25.6 10.7 615/1200 51.5%

Epoch 300 k 24.9 10.5 660/1200 55%

Epoch 400 k 24.5 10.2 708/1200 59%

Epoch 500 k 23.9 10.1 768/1200 64%

Epoch 600 k 23.4 9.9 815/1200 67.9%

Epoch 700 k 23 9.9 883/1200 73%

Epoch 800 k 22.6 9.8 921/1200 76.8%

Epoch 900 k 22.1 9.7 948/1200 79%

Epoch 1000 k 21.7 9.6 983/1200 81.9%

Table 9: Result of production test every 100 epochs training with 12 exemplars

for each categories, and one-shot labelling event (hebb training) for each

categories, tested with others 12 exemplars for each categories (different

from the ones used for maps training), using the same Hebb Connection

matrix in each training/testing.

trial results In Appendix, are show incremental Hebbian test-

ing grouped result for categories in the following configuration: spaced

out incremental, not-incremental and semi-incremental introduction, both

with and without expanded organization phase during SOM training.

4.2.5 Problems with maps: the idea of enrolling new neurons

In the preceding pages, we have introduced two new learning tech-

niques: the introduction of spaced out semi-incremental categories and

the incremental Hebbian training during SOMs training. Furthermore, we

saw that expand the phase of organization at the expense of that of con-

vergence does not lead to good results. One of the known problems of

self-organizing maps is linked to the fact that, by increasing the number

of categories that these must be able to identify, the available space for

each of them, in terms of number of neurons on the map, decreases. We

pay attention to one fact: the problem does not consist in the number of

exemplars presented to the map. In fact, given a map with an arbitrarily

small number of neurons, this is able to best align itself to an arbitrarily

large number of exemplars: the problem consists in the result that we
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want to obtain when we subsequently present an input pattern. If the pat-

terns are distinguished between two possible categories, then it takes just

a few neurons (potentially, exactly 2) to make the map able to distinguish

them. If the patterns presented in the input must be distinguishable in

hundreds of different categories, then it is natural to think that hundreds

of neurons must be trained. Introducing also the need for natural noise

recognition, namely, in our examples, the ability to distinguish noisy ex-

emplars as belonging to categories from which deviate in part, is still more

clearly the reason for which the number of available neurons is critical in

whole training process. So we decided to increase the size of the map and

see how this aspect influence on the ability to categorize new categories,

tested again by introducing new exemplars in a semi-incremental way

and incremental Hebbian training every 100 epochs of SOM training. We

will discuss about this enlarged fixed configuration of maps later, in sec-

tion 4.5. We anticipate that the results are very good but we don’t like the

idea of solving the learning problem by incorporating a greater number

of neurons at the beginning: for several reasons, first of all because this so-

lution is not a real solution. For an arbitrarily large number of categories,

we have reason to believe that the problem of maps’ size reoccur easily. A

question arises spontaneously: what would happen, if the map was able

to enlist new neurons when necessary, without the need to determine in

advance how many of these serve to maintain a particular performance?

In the next section, we will introduce the dynamic expansion of the map,

namely the introduction of Growing SOM in the model.

4.3 the dynamic expansion of the maps

4.3.1 A brief introduction

The last and most important step has finally found its justification: the

idea is to transform the standard sequential SOM training by introducing

the ability to evolve according to certain parameters, enlarging neurons

grid while preserving the invariants of topological structure and allow-

ing to use the same Hebbian connections developed with previous map

topology. The whole process will be explained in detail in the following



82 overcoming the limitations

pages: before introducing the dynamic expansion of the map, let’s talk

about some solutions proposed in literature about evolving SOM. Then,

we will introduce of the original model proposed by Bernd Fritzke, from

which we took great inspiration for the creation of the dynamic maps

expansion.

4.3.2 State of the art

One of the first jobs that we find in the literature about learning pat-

terns of language is the work of Plunkett, Sinha, Møller, and Strandsby

[27]: in this work and in Associative approaches to lexical development

[24], it is presented a auto-associator. This model combines label to im-

age and is based on previous models like that of Knapp & Anderson [10]

and the extension of Chauvin [4]. Input patterns created are presented ac-

cording to Posner’s technique [29, 31]. An interesting aspect of this work

is that before the submission to the network, all images pass through a

retina that compresses the representation of the input pattern from 2100

px to 171 retinal cell, contemplating that form of generalization reached

by SOM in our model. Then the retina stores a concept of proximity be-

tween generalized patterns. One of the shortcomings of this model is re-

lated to the use of auditory patterns consist of 32 binary vectors in which

a only single bit is active: they are completely orthogonal and there is

a categorical structure between the label (the association with the visual

categories is arbitrary as in our model). The specific task of the network

is to reproduce distinct representations of the images presented to the

retina and of the label: then, the network is trained with a combination

of self-learning phases. The middle level of hidden units creates a com-

posite representation: following the presentation of an image, is possible

to get the label (production test) and viceversa (comprehension test). The

hidden units, immediately after the retina and the level that identifies the

label, are used to achieve fine-tuning: for example, from the side of the

visual recognition, these units are used to make fine-tuning of the clus-

tering work done by the retina level. A conscious critique to this model,

and in general to the different types of models available in the literature

is moved by Regier in 2005 ([32]), in an article in which he presents LEX.
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In his work, it is reviewed three types of models: subsymbolic, competi-

tion and inference models. LEX is the first work that manages to combine

together the features of subsymbolic and competition models: the model

is presented as a mix between the model of Plunkett & Co (1992), men-

tioned before, and ALCOVE by Kruschke, [12]. Reiger categorizes the first

one as a subsymbolic model and stresses that «this class (subsymbolic) of

models fails to capture children’s ability to remember a newly learned

word in the face of up to a month’s Subsequent exposure to other words»

- Markson & Bloom, 1997 [20]. This limit will still be present in the model

presented by Mayor & Plunkett in 2010, [21], but as we will shown, the

model described in this work, an evolution of the model they proposed,

overcome this limitation. A strong criticism from Reiger is linked to the

fact that lot of models in literature suffer from a severe lack: a phonolog-

ical representation and, consequently, the inability to take into account

the change of the ruling sensitivity. This criticism is also moved by Mayor

& Plunkett to their model. In later models this lack is filled and it in-

creasingly recognizes the importance. In our model, this type of failure is

not really present: this does not mean that we have a solid phonological

representation, but we have a growing SOM whose sensitivity to the pro-

nunciation is improving because the words are categorized always better

during subsequent phase of training.

An interesting aspect that concerns the lexical evolution and that will be

featured in all subsequent models, is introduced by the CALLED model

(Merriman’s - [22]) and consists in selective attention to certain input di-

mensions. This type of selective attention can also be realized with SOM

applying a mask from different importance to each of the weight vectors

that characterize neurons. A model that tries to explain language learn-

ing in adults is ALCOVE: this implements this form of selective attention

through attentional weights. We will return to this point in the conclu-

sions.

ALCOVE, a model presetend by Kruschke in [12], is a three-level model:

his strenght is that combines in one model two different approaches: ex-

emplars theory and prototypes theory. According to Nosofsky ([25]), the

author of the GCM model that underlies ALCOVE, many network mod-

els flatten out to be prototypes models because the stimuli are categorized
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according to their proximity to "centroid" of categories. Indeed, even the

SOM model of the Mayor & Plunkett works in that way. According to Kr-

uschke, the goal of ALCOVE is not to discover new representations in the

hidden layers after many trainings, but to drive trainings discovering how

much different input dimensions matters more. The model consists in an

input layer, an intermediate hidden layer in which they are stored exem-

plars, and an output level. The approach is connectionist but there is also

a form of interaction between exemplars in the middle level. It is a good

model because it presents the attentional weights mentioned previously

in input nodes, and these weigths are used as multipliers when calculat-

ing distances between stimuli and nodes belonging to hidden level, to

give more or less importance to certain input dimensions (features). One

of the shortcomings of this model is related to the number of categories

(number of output nodes): this is defined upstream. The model that we

present in this work does not have this drawback: if there is a sufficient

number of neurons, a SOM is able to categorize an arbitrarily large num-

ber of categories. Another fundamental flaw of these models, is so far

linked to the correction of errors: the connections of the ALCOVE and

also the previous model is always error-driven, then linked to a form of

supervised learning. The Hebbian learning, however, does not provide

error correction is supervised in the sense that stimuli are taken in pairs

(defined not by chance, or group are correct) but the supervision is lim-

ited to this aspect. Despite this flaw, ALCOVE present no catastrophic in-

terference, because the storage of exemplars in the hidden level prevents

it. «None of the models described above exhibited taxonomic responding

and fast mapping since they Involved training networks on the repeated

and multiple object-label associations in order to extract the statistical

structure of the label-category relationships» - Mayor & Plunkett, [21].

Another criticism that is easily raised is that everything that makes use

of back propagation or any type of algorithm that is based on gradient

descent needs a constant supervision and multiple exposures to stimuli.

The only way to cope with this necessity and use a single labeling event

to obtain a generalization of the word-object association passes through

the use of the SOM.
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som based model One of the first models based on SOM is pre-

sented by Schyns in his job in [34]: the model has a structure similar to

the one used by Mayor & Plunkett in [21]. However, although the idea

is innovative, the model is tested on a limited number of categories, but

the most interesting aspect concerns the theoretical limit highlighted by

Schyns about the very idea of concept. According to Schyns, humans form

concepts to represent things that, in reality, have no a priori similarity

between them: we are fully agree with this statement. If we take the cat-

egories of things like "be healthy", then "follow a good diet", "do some

exercise," and "enough sleep" are activities that have few properties in

common - Barsalou, [2]. How can they be grouped? Murphy and Medin

say that people can form categories according to a "theory" they have

about the objects in these categories. In practice, there is some sort of in-

vestigation in the categorization process, which provides an analysis of

what is already known of objects in that category. We share the idea of

Schyns according to which these theories are talking about Medin and

Murphy could highlight the information that "is" and "is not" important,

to take into account different situations thus maintaining the conceptual

coherence of the category: conceptually, the process realized by the pres-

ence of these theories could be implemented by a sort of features selec-

tion. So according to Schyns humans do feature selection, and this aspect

is also heavily discussed by Reiger.

The most interesting models are those of Li and colleagues [14, 15],

Devlex and Devlex II. The first is a model that seeks to solve the prob-

lem of growing words number with Growing-SOM. In their work, Li and

colleagues dismiss the proposal growth assumptions from Fritzke ([? ])

and others. Their technique to cope with the problem of catastrophic in-

terference after new words presentation is based on the combined use of

static SOM and ART2 model (Carpenter & Grossberg, 1987 [3]): during

their growth process, there is a transition from SOM model to the other,

ART2, and the idea is to enable silent nodes, previously disabled, that

can be enrolled when needed. One of the defects is related to the oper-

ation of ART2 mechanism: in practice, when there is a change from one

model to the other, SOM concept is set aside, topology is ignored, and

so they must use another method (Distance Ratio Preservation) to find
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the right position of the new node in the map. This process undermines

the plausibility of the model, in a more consistent way than what was

achieved in the proposed model. You could move a critical compared to

the enlistment process of new neurons: enable silent neurons is definitely

more neurologically plausible. However, we believe that recruiting new

neurons, or having a set of silent units are two different ways to interpret

the same problem.

sustain One of the most suitable model to categorize is SUSTAIN,

presented by Love & Co. in [16]. SUSTAIN (Supervised and Unsuper-

vised STratified Adaptive Incremental Network) is a model of how hu-

mans learn categories from examples. SUSTAIN initially assumes a sim-

ple category structure. If simple solutions prove inadequate and SUS-

TAIN is confronted with a surprising event (e.g., it is told that a bat is

a mammal instead of a bird), SUSTAIN recruits an additional cluster to

represent the surprising event. Clusters compete to respond to input pat-

terns and in turn inhibit one another. When many clusters are strongly

activated, the output of the winning cluster is less: psychologically, this

signifies that competing alternatives reduce confidence in a choice. The

SUSTAIN model, which aims to model a unique response to categoriza-

tion problems, including inference problems, category constructions, etc.,

is packed with parameters: in [16] are listed many of these, including

some about attentional focus, cluster competition, decision consistency,

learning rate, category focus, and others. Moreover, SUSTAIN’s cluster

recruitment mechanism creates a new cluster when the current item is

not sufficiently similar to any existing cluster. This threshold is captured

by another parameter. In order to set all these values, SUSTAIN’s parame-

ters are adjusted to minimize the sum of squared error among data means

and the means calculated by averaging over thousands of SUSTAIN sim-

ulations. Although, according to its authors, «SUSTAIN’s behavior is not

extremely sensitive to the particular values of the parameters», we have

reason to believe that this type of operation is too complex, especially for

the type of task we have to solve: it is universally accepted that the cog-

nitive skills are subject to development in early childhood. This model

seems to be moving in the direction of justifying a huge number of cog-
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nitive processes, far more articulate than those that guide the learning of

words in early childhood. On the other hand, SOMs are very good for

reproducing plausible cognitive processes, by very reason of their sim-

plicity: the model, for training, not only defines a vector space on which

to run the accounts. In contrast to the SUSTAIN model, a SOM is an

topologically organized model, and this feature is a double-edged sword:

on the one hand, this organization fits easily in contrast to the high di-

mensionality input and makes it difficult to always represent in a correct

way the proximity between the categories in topological terms, especially

when the neurons are arranged on grids with a low number of dimen-

sions. On the other hand, the presence of a topological order, and the

influence of this during the training phase binds in a deeper way to the

nature of the human brain, in which the neurons are actually connected

to each other by synapses. The interaction between neurons takes place

in a more coherent way with the type of process which the model tries

to simulate. This led us to think of a natural evolution of the yield orig-

inally proposed by Kohonen maps: the growing self-organizing maps. A

growing self-organizing map (GSOM) is a growing variant of the popu-

lar self-organizing map (SOM). The GSOM was developed to address the

issue of identifying a suitable map size in the SOM: exactly the kind of

goal that we defined earlier. Many different models have been created to

achieve this sort of incremental SOM, able to evolve. The literature about

proposed arbitrarily complex models, such as those described in [26] and

[39], however, our focus has shifted quickly in the direction of a linear and

simple solution that did not involve distortions of the original model, tak-

ing into account any previous considerations leveraging standard SOM.

With this goal in mind, we have selected the work of Bernd Fritzke, who

exposes his solution to the problem of automatic expansion without de-

taching too much from the prerequisites of our model. In the next section,

we will deepen the model presented by him in [5], explaining in more

detail the growth process: then we will explain how we have modified

this technique to overcome the limit of learning new words, with the in-

troduction of our version of Growing SOM.
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4.3.3 An old idea by Bernd Fritzke

In Growing Grid - A self organizing networks with constant adapta-

tion neighborhood and strength - [5], Bernd Fritzke present a novel self-

organizing networks which is generated by a growth process. We chose

this model because the objective pursued by Fritzke was in line with our

needs: create a neural structure from a rectangular grid that it was able

to increase its size during the self-organizing process. The technique pro-

posed by Fritzke allowed us to attack the problem of the expansion of the

map as simply as possible, responding specifically to two fundamental

questions: when we proceed with the expansion, and, fixed the moment,

how we could proceed? We recall that our lattice, for comparison with the

needs of Mayor & Plunkett model and to make treasure of the studies

formulate by them about that particular configuration, is hexagonal, in a

two-dimensional grid. A first major issue is to preserve the topological

structure: is not possible, in fact, add some neurons to the map, without

relying on the topological nature of the space defined. To put it through

an image, if we look at the map shown on the left in Figure 25, this can

not be expanded as shown in the immediately right image: if necessary,

you can add an entire column or row (third and fourth figures). This con-

straint involves a number of considerations which we will return later.

Suppose, to continue the argument, to accept the idea of adding a row

or a column (or possibly both) to the map. A second, trivial question, is:

where we add new neurons? At the boards, in a random position, or in

the middle? Knowing the dual nature of the multidimensional space de-

fined by the weight vectors of the maps, we could imagine that perhaps

there is an optimum topological position (or more than one) in which to

place new neurons. The work of Fritzke, in these terms, was enlightening.

fritzke model : explanation Fritzke uses a rectangular map and

associates to each neuron a vector of weights and a resource variable, a sim-

ple counter initialized to zero. The resource variables are used to gather

statistical information to decide where to insert new rows or columns of

units in the network. Subsequently, the training of the map proceeds as
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Figure 25: A first approach to the expansion of a hexagonal SOM.

defined by the Kohonen. In addition, at each adaption step the resource

variable of BMU is incremented:

τs = τs + 1; (13)

and, therefore, these values show how often a unit has been BMU. For a

network of size k ·m he performs k ·m ·λg adaption steps before inserting

new units. Thus, the parameter λg indicates how many adaption steps on

average are done per unit before new units are inserted. After k ·m · λg
number of adaption steps have been performed, we determine the unit q

with maximum resource value:

τq > τc ∀c ∈ Units (14)

This unit has been best-matching unit most often and, in order to dis-

tribute the pattern evenly over all units, it makes sense to insert new row

or column in its vicinity. Since there are several possibilities how to this

he have to choose a particular one. The idea of Fritzke is select the most

different neuron f (in term of Euclidean distance between weight vectors)

from the nearest ones to q: then, insert a column / row between the two

units. The reasoning behind this choice is that f presumably indicates a

direction with high variance in the underlying data. This, again, should

be taken into account by increasing the resolution of the grid in the di-

rection ([5]). In Figure 26, from left to right, are shown the BMU in green,

nearest units (distance 1 in topological sense) in yellow, the most distant

unit from the BMU in blue; in the right image, the column of new units in

pink introduced between the BMU e the most distant. The weights of the

new units will be set to the average value of the respective weights of the

units next to them, in this case of the left and right columns respectively

the pink one.
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Figure 26: A first approach to the expansion of a hexagonal SOM.

stopping criteria A normal training stop in the number of epochs

defined: however, Fritzke identifies two additional stop criteria. The first

is trivial: we impose a maximum number of units in the map. The second

is an indirect criterion: due to the strong constraints of the topology it can

not be expected that each unit receives an equal amount of input signals

(i.e. a fraction 1/(m · k)). Therefore, one could «continue the growth pro-

cess until the share of input signals falls below a bound for each unit in

the network».

As we have seen, the idea of Fritzke is simple and powerful: for more

details on the experiments conducted and results he achieved refer to the

reading of [5]. Based on the work done up to this point, we have created

several techniques to expand the maps, which are aimed primarily at the

way new neurons are added to the map and the learning parameters used

for training. We will return on the last part exposed by Fritzke about the

final stage of fine-tuning in chapter 5, the final part of this work: in the

next pages we present the problems encountered in the model and the

changes made to the original technique he proposed. Then, we will show

some comparative experiments between some selected and interesting

training configurations chosen between those realized.
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4.4 the adaptation of the technique proposed by b . fritzke

4.4.1 The known issue

The first issue of Fritzke technique is that this is well suited to a map

with rectangular lattice: the maps used up to this point are hexagonal.

How could we proceed? The first approach has been to adapt the concept

of proximity to the shape of the neurons: fixed a neuron in one of the two

maps, as we already shown in Figure 16, this has 6 nearest neurons7 at

distance 1 (not 4 as in Fritzke model), of which 2 to north, 2 to south, 1 to

east and 1 to west, as shown in the left upper corner of Figure 27. It was

decided, as a first approximation, to consider the two neighbors above

and below, respectively, indicators for the addition of a line above and

below the selected unit. Problems have arisen in the way the library SOM-

Toolbox handles weight vectors. Fixed a map of size m · n, the library

associates to each neuron on the map an index: the indexes are assigned

per column, as shown in central part of the figure. The weight vectors are

retained in memory in a matrix, called codebook, of size k · j with k = m ·n
and j equals to the size of the weight vectors. The addition of a column

within the topology, involves insertion of a series of consecutive rows in

the matrix with the weights of vectors, as shown in the lower right matrix

in figure.

7 On average, because the marginal ones has less the 6, often 3 except for the ones in the

corner, which has 2 nearest units.
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Figure 27: A first approach to the expansion of a hexagonal SOM: unit-column

insertion.

The addition of a row in the topology is slightly more complicated, as it

translates in the insertion of specific rows in a specific points in the matrix

of weights, not in a row-block insertion as shown in lower right matrix

expanded shown in Figure 27. The Figure 28 shows the two situation8. It

8 The left column insertion is analogous to the right column insertion.
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happens that the inclusion of a row involves the insertion of a row in the

matrix of weights at the index of the first new unit inserted in the new row,

then the shift of the next x old row, then the insertion of an additional

row for the second new unit: the operation is very delicate because it is

necessary to accurately calculate the positions of the new rows, which

results in a work of indexes calculation in which it is easy to make a

mistake (also with risk to not recognize it). In fact, each units in the maps

change its index according to the old position and the position of the new row

inserted during process of expansion.

Figure 28: A first approach to the expansion of a hexagonal SOM: unit-row in-

sertion.

a big problem to be solved Although it seems that inserting rows

and columns with the consequent need to maintain a consistent array of

weight vectors of each neuron is a difficult problem, the most difficult
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problem to deal with is not about the codebook, but the matrix of Hebbian

connections. As we have had occasion to specify, this is defined as follows:

HebbMatrixm·n,k·j =



w1,1 w1,2 · · · w1,k·j

w2,1 w2,2 · · · w2,k·j
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

wm·n,1 wm·n,2 · · · wm·n,k·j


(15)

where:

m is the number of lines of the visual map grid;

n is the number of columns of the visual map grid;

k is the number of rows of the auditory map grid;

j is the number of columns of the auditory map grid;

As already said, the incremental Hebbian learning provides for the

old synaptic connections. If the topology of the maps remains unchanged,

the array of connections connections has fixed size: simply use the same

matrix of synaptic weights defined in the previous step, without reset the

synaptic weights every time the Hebbian training is introduced, and you

are done. If during the training the topology of maps changes, then the

matrix of Hebbian connections must change consistently maintaining old

connections and growing in dimensions to create synaptic connections

between new units. So it is necessary to keep track of the changes of the

map grid, in order to neatly and reflect all the topology changes also in

the Hebbian connections matrix. Conceptually, introduce new neurons on

the visual map means introducing new synapses between each of them

and each neuron on the auditory map: preserve synapses previously cre-

ated in Hebbian training and expand the matrix of Hebbian connections

weights in order to make space for new synapses to develop, it’s a very

complex job. Let’s talk about how we did it.
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4.4.2 Preserve Hebbian connections during Growing SOM training

The matrix of Hebbian connections has a number of rows equal to

the number of neurons of the visual map, and a number of columns

equal to the number of neurons of the auditory map. Each expansion

of the visual map, whether it takes place by adding a row or a column,

results in an expansion in terms of number of rows in the Hebbian ma-

trix. Similarly, each increment of neurons on the auditory map translates

into an increase in the number of columns of the Hebbian matrix. The

incremental Hebbian training is conducted basically every 100 epochs

in each experiment: during the first step, the Hebbian connections ma-

trix is created on the basis of the size of the visual and auditory Grow-

ing SOM after 100 epochs of (growing) training, so the problem does

not arise. At the epoch 200, the two maps are potentially changed: not

only, they could be changed more than once, and this makes it neces-

sary to review the same changes of the topology, in the chronological

order (i.e., in term of epochs) in which they occurred, to make the right

moves in the Hebbian matrix. To make this shifts / insertions, during

training we record epochs in which a change occurs, and the indexes of

the BMU inserted, exploiting MATLAB structs9. These structs are then

retraced and each update is executed in Hebbian matrix, in which new

synapses (new rows and columns) are created between the new and old

neurons, in a spontaneous synapto-genesis process similar to that simu-

lated for the first step, however, made only to populate new rows and

columns inserted. The Hebbian matrix, at the end of this complex steps,

is ready to be used during the associative training phase, in the expanded

maps are fully linked, with old synaptic connections all preserved. A

9 Similar to the structures in the C language, MATLAB facilities allow you to create arbi-

trarily complex associative arrays, to keep certain data in memory in a more elegant way:

the programming style is very close to the OO one, without enjoying all the benefits that

this offers but gaining in simplicity.
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simplified pseudo-code of the whole process is shown in Algorithm 4.

Algorithm 4: Pseudo code of Hebbian connections matrix expansion

with preservation

Data: HebbMatrix, Visual / Auditory maps with expansion history.

Result: Expanded Hebbian Connections matrix

previous_epoch = 1;

foreach epoch ∈ Hebbian_training_epochs_list do

epoch_slots = [previous_epoch; epoch];

foreach expansion on visual map occurred ∈ epoch_slots do
visual_indexes_new_units = append(epoch,

indexes_added);

end

foreach expansion on auditory map occurred ∈ epoch_slots do
auditory_indexes_new_units = append(epoch,

indexes_added);

end

foreach indexes on visual map ∈ visual_indexes_new_units do

HebbMatrix = Algorithm 5(HebbMatrix, indexes, ’row’);

end

foreach indexes on auditory map ∈ auditory_indexes_new_units

do

HebbMatrix = Algorithm 5(HebbMatrix, indexes, ’column’);

end

previous_epoch = epoch;

end

return ExpandedHebbianMatrix;

the hebbian connection matrix - expansion algorithm In

the algorithm, the procedures for identification of the expansion steps are

not made explicit in a precise manner as how-to realize what is described

in the text would result in a verbose description of certain implementation

choices: despite this, for completeness we present the insertion algorithm

of rows and columns, that is to say the true and proper10 expansion func-

10 The MATLAB syntax has been simplified by introducing fictitious names of symbolic

functions.
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tion in Algorithm 5.

Algorithm 5: Expansion function

Data: HM, new_unit_indexes, mode

Result: Expanded_HM

last_copy = 1;

/* row insertion in Hebbian Matrix (visual map changes) */

if mode ≡ ′ row ′ then

until = row_number(HM) +number_of(new_unit_indexes);

foreach i = 1 to until do

/* unit not involved in change, copy entire row */

if i /∈ new_unit_indexes then

Expanded_HM = append_row(HM(last_copy, :));

last_copy = last_copy+ 1;

/* unit involved, add row with new random weight (as

init) */

else
Expanded_HM =

append_row(random_synpato_genesis);

end

/* column insertion in Hebbian Matrix (auditory map changes)

*/

else
until =

column_number(HM) +number_of(new_unit_indexes);

foreach i = 1 to until do

/* unit not involved in change, copy entire column */

if i /∈ new_unit_indexes then

Expanded_HM = append_column(HM(:, last_copy));

last_copy = last_copy+ 1;

/* unit involved, add column with new random weight

(as init) */

else
Expanded_HM =

append_column(random_synpato_genesis);

end

return Expanded_HM;
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The algorithm proceeds along the entire Hebbian matrix passed as a pa-

rameter, excluding from copy all the lines whose indices do not coincide

with indices of units involved in change, namely the new units inserted

in the map (listed in the vector new_unit_indexes). When this does not

occur, it means that the index reached is the index of a new unit, so we

have to insert new row (or column). In this case, a row (or column) is

initialized with the same parameters used for the initial synpato-genesis

that involved all the cells of the Hebbian matrix.

4.4.3 Expansion around the neuron

the winning alternative An alternative way to insert new neu-

rons is not to look for the direction of maximum variance, and insert two

new columns and two11 new rows surrounding the selected neuron. This

technique consists in a sort of extension of the technique originally pro-

posed by Fritzke, to achieve the expansion in a perspective of increased

insensitivity to the distribution of probability with which the input pat-

tern are scattered: assuming are uniformly distributed, and in a training

situation optimal be recognized by BMU equally distributed evenly on

the map, then it is natural to think that if a neuron fires as BMU more

than others during training, this should be surrounded by new neurons,

distributed evenly around himself. To achieve this second type of expan-

sion, we used the expansion technique previously created: the idea is to

compute the neighbors of the BMU selected to carry out the expansion,

and add a row (or a column) around this by iterating on all neighboring

neurons. The only aspect to which we must pay attention, is related to

the fact that after a single expansion, at least one of unique indexes of

the selected unit for the expansion and its neighbors units change: so, an

upgrade of indexes of involved-in-change units must be done. In Figure 29

we see represented this second expansion technique. The image must be

read from left to right, top to bottom: in the first figure, we note the neu-

ron that has been activated more times as BMU. This has 6 neighbors:

as said previously, there will be 4 expansions. In the next picture, we see

11 May be less, if the neuron is marginal, in which case we add only one row / column, for

a total of 3 or even 2 additions, if the selected unit is at the corner of map grid.
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the first expansion: a column is inserted to the right of the neuron. In

the following, a row below. Different colors were assigned to each of the

neurons at distance 1 from the BMU and used in every expansion step

to highlight the moves: in the first displacement, the first two columns

have been highlighted in blue to facilitate the understanding of the shift

operation idea. In subsequent images, we see regarding the introduction

of a line below, one column to the left box, and one line above the BMU.

In the last image on the bottom right, they show the new neighbors at a

distance 1 surrounding the BMU selected.

4.5 some results in comparison

In this last section, we will show the results obtained by incremental

Hebbian training and semi-incremental insertion technique of the new

categories, during a training with learning rate and neighborhood radius

decreasing and repeated every 100 epochs (expanded organization phase),

using, in order, two standard SOMs with fixed grid size 25 · 25, another

couple with grid-size 50 · 50 and a couple of Growing SOM that expand

with the technique proposed in subsection 4.4.3 up to ≈ 50 · 50 size.

4.5.1 Static SOMs with grid size 25 · 25

Here are the results of the incremental Hebbian training with semi-

incremental introduction of categories, with static maps of grid dimen-

sion 25 · 25. In Table 10, in the first row it is shown the quantization error

reached from the map at the epoch defined on the columns; in the last

rows, the percentage of categories learned (with respect to those intro-

duced defined on the rows).



100 overcoming the limitations

Figure 29: SOM Fritzke uniform expansion.

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.82 12.61 15.24 16.94 18.42 20.20 21.06 22.16 23.42 25.93

Auditory Map Q.Error 5.45 5.60 6.09 6.75 7.60 8.15 8.62 9.02 9.58 10.86

Learned words 95.00% 92.92% 85.00% 84.38% 77.33% 71.11% 63.33% 57.92% 52.96% 47.83%

Table 10: Q.errors and percentage of categories learned during production test

conducted after a spaced out semi-incremental introduction of cate-

gories during static maps training with grid size of 25 · 25 and a single

labelling event during incremental Hebbian training.
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4.5.2 Static SOMs with grid size 50 · 50

The two maps were expanded by 4 times (50x50 hexagrid). The results

are obvious: the categories are learned almost completely, (final result

about 88% of learned words, with ≈ 100% learned until the introduc-

tion of last 10 categories) because the map has a huge number of neu-

rons available to categorize exemplars seen during training, so Hebbian

training succeeds because the quantization error is minimized. However,

analyzing the neurons actually used by the map to categorize patterns,

it appears that many of them are not actually exploited: the unused neu-

rons are neurons that have passive role in the complex process of cate-

gorization, acting as a barrier between categories boundaries, making it

harder to overlap them and consequently leading to better learning, de-

spite the incremental introduction and evolving training set. Furthermore,

the problem is solved only partially, because if the introduction of cate-

gories lasts for a greater number of categories, as already mentioned, it is

natural to think that the two maps will be saturated again.

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 10.93 11.09 11.01 11.20 11.41 12.08 12.39 13.04 13.92 17.40

Auditory Map Q.Error 5.13 5.00 5.06 5.17 5.14 5.32 5.44 5.64 5.93 7.36

Learned words 100.00% 100.00% 100.00% 100.00% 99.83% 98.06% 99.05% 98.23% 97.04% 88.00%

Table 11: Q.errors and percentage of categories learned during production test

conducted after a spaced out semi-incremental introduction of cate-

gories during maps training with grid size of 50 · 50 and a single la-

belling event during incremental Hebbian training.

4.5.3 Growing SOMs from 25 · 25 to 50 · 50

To test the incremental Hebbian learning performance applied on

Growing SOM, we chose to start from two maps of the same size of the

static first maps tested before (25 · 25), and to set the expansion parame-

ters in such a way as to finish the training at ≈ 50 · 50 previously tested.

The results are surprising: the maps obtain performance equal to those
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obtained from the instanced maps with initial larger number of neurons

50 · 50. This result makes us believe that the process of expansion of the

maps, such as the expansion of Hebbian synaptic connections, is a good

support to the incremental form of training introduced to cope with the

problem of learning of new words. Results are shown in Table 12.

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 19.79 22.23 17.91 16.14 14.74 14.80 15.26 14.99 15.72 18.77

Auditory Map Q.Error 7.67 7.39 8.32 7.36 6.56 6.63 6.58 6.26 6.37 7.70

Learned words 100.00% 92.08% 95.56% 95.42% 93.50% 95.97% 94.05% 94.69% 93.15% 84.83%

Table 12: Q.errors and percentage of categories learned during production test

conducted after a spaced out semi-incremental introduction of cate-

gories during growing maps training with init grid size of 25 · 25 and

final ≈ 50 · 50 and a single labelling event during incremental Hebbian

training.

Categories specific results could be found in Appendix, Table 23, Ta-

ble 24, Table 25, Table 26, Table 29 and Table 30.

4.5.4 Compared results

In Figure 30 we show the performance of three test described above

in comparision histogram.

Figure 30: Compared results of static, static enlarged and growing visual audi-

tory models.
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We have reproduced many of the tests conducted by the authors of the

original model to test the effectiveness of the model, we tested both forms

of training, standards and incremental, on both model variants, with static

maps and growing SOM. This type of tests were conducted to verify two

aspects: first, the new model’s ability to preserve the characteristics pre-

viously recorded during a standard method of training despite the intro-

duction of growing SOM. Second, to compare the ability of the proposed

model from that original deal with a form of incremental training most

likely the type of "training" which is subject to child in the first twenty-

four months of life. In Figure 31, are shown the trends of the taxonomic

factor of the model of Mayor & Plunkett and of our model, respectively

during a standard method of training and in the presence of spaced out

insertion of the categories (incremental training) calculated after different

epochs of training. In all next comparison result, original model trend

shown during standard training was taken from [21]. In Figure 32, are

Figure 31: Taxonomic result during maps evolution in standard training (left)

and incremental training (right). In blue, taxonomic factor reached by

Mayor & Plunkett model, in green by our model.

shown the trends of the quantization error of the model of Mayor & Plun-

kett and of our model, respectively during a standard method of training

and in the presence of spaced out insertion of the categories (incremen-

tal training). As shown, the trend recorded during a training standard is

similar to the one recorded using SOM static: not only the growing SOM

showed a greater increase of taxonomic response thanks to their ability

to grow. During the incremental training, the standard model (blue) col-

lapses because the maps suffer of catastrophic interference. The model
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Figure 32: Taxonomic result compared with quantization errors during maps

evolution in standard training (left) and incremental training (right).

In blue, taxonomic factor reached by Mayor & Plunkett model, in

green by our model.

presented growing SOM (green) does not have this problem, as the trend

of the taxonomic factor easing curve (remember that it is the index num-

ber of learned words). Similar result are shown in Figure 33 related to

topological errors trend. We also played a synaptic pruning described by

Figure 33: Taxonomic result compared with topological errors during maps evo-

lution in standard training (left) and incremental training (right). In

blue, taxonomic factor reached by Mayor & Plunkett model, in green

by our model.
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the original authors of the model, and also in this circumstance the model

with growing SOM has the same performance recorded running the static

model, as shown in Figure 34.

Figure 34: Taxonomic result compared with synaptic connectivity during synap-

tic pruning phase in standard training. In blue, taxonomic factor

reached by Mayor & Plunkett model, in green by our model.

4.6 summary

In this chapter, we introduced the form of incremental training re-

quired to deal with the problem of learning new categories. This has led

to the confirmation about the need to introduce new neurons to increase

the categorization ability: to solve the problem of choosing a priori the

size of the map, we have introduced a form of dynamic expansion which

is able to maintain the wired knowledge previously stored, both during

Hebbian learning and during the learning maps, responding to the need

to categorize exemplars from new categories through a neural growth

process that is expected to enroll new units. From the tests conducted on
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static maps and maps of different sizes able to grow during training, the

Growing SOM are a valid alternative to the standard SOM, as they are

able to achieve performance comparable to static maps arbitrarily large

with fixed size.



5
N E X T S T E P S

In this chapter, we will investigate some possible ideas for development

of the current model, with considerations about the maps and techniques

through which training can take place.

5.1 future possible expansion

5.1.1 Final fine-tuning

Fritzke speaks in [5] about fine-tuning at the end of the expansion

of the map, as we said before in subsection 4.3.3. This process is done

performing a form of training with decreasing parameters once the stop

criterion of maps’ growing learning is reached: in our model, we have not

achieved this last phase, since the very concept of stop criterion is not con-

templated. The question we asked ourselves is: if this step of fine-tuning

was necessary, when it would be permissible to insert it? In a real context,

a child may be constantly subject to new stimuli: that would make no

sense to introduce a form of crystallization during a normal day-of-learning.

However, it is now known that during the hours of sleep the brain is the

scene of cognitive processes different from those that are carried out dur-

ing the day: as the literature grows, a clearer picture is emerging of which

memories are processed during sleep and the relevant aspects of sleep in

physiology (Rebecca M.C. Spencer, [13]). Different sleep stages are associ-

ated with different forms of memory - meaning, sleep is not just as singu-

lar memory is not singular. In [13], Rebecca M.C. Spencer & Co show ev-

idence that classroom naps support learning in preschool children by en-
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hancing memories acquired earlier in the day compared with equivalent

intervals spent awake. This nap benefit is greatest for children who nap

habitually, regardless of age. Performance losses when nap-deprived are

not recovered during subsequent overnight sleep. Physiological record-

ings of naps support a role of sleep spindles in memory performance. To

investigate whether in-class naps benefit declarative learning in preschool

children, Rebecca M.C. Spencer & Co measured changes in performance

on a visuospatial task over a nap and an equivalent interval of wake. As

they said, a visuospatial task was selected for three reasons: first, this task,

like other declarative learning tasks, has been shown to engage the hip-

pocampus, and hippocampal-dependent tasks are subject to neural replay

during sleep, a possible mechanism underlying sleep-dependent consol-

idation; second, visuospatial learning has been shown to benefit from

overnight sleep in young adults; third, the task, like the game Memory, is

appealing to preschool children.

We think a possible evolution of this model provides for the introduc-

tion of this stage of fine-tuning in an efficient simulation environment,

able to replicate every stage of learning, including the passive one real-

ized during sleep: the stage of fine-tuning mentioned Fritzke might be a

good vector to simulate the phase of crystallization of learned memories

during the night, including Hebbian synaptic connections, in a totally un-

supervised context that is based on what has been learned during the day.

In this scenario, it would be interesting to compare the results obtained

following the introduction of periodic convergence phases of the maps,

with the same results obtained from experiments in which sleeps (or naps)

is not simulated, and see if the sleeping process results in quantifiable ben-

efits in the process of word learning.

5.1.2 Topology and related problems

An interesting alternative to the expansion technique described in sub-

section 4.4.3 involves a radically change the topology of the map: if this

was toroidal, we could easily add an arbitrary number of units around the

unit selected by inserting some "circles of units" on the right and left of
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the selected neuron, creating a empty space around it. However, reflecting

well on this shape, there would be the same imbalance linked to the most

distant units. Conceptually, add rows or/and columns means inserting

new units also very distant (topologically) from the one that caused the

change. However, a three-dimensional and symmetrical topology would

lead the neurons to have an equal number of neighbors and, potentially,

also a greater number of neighbors if we think about the torus as a full

solid. It is difficult to investigate the behavior of a SOM whose neurons

are arranged on a three-dimensional surface without performing specific

tests, but we know that the neighborhood plays a key role during learn-

ing. Introducing a more complex structure would change definitely the

way in which the weights are updated: also, conceptually the idea of po-

sitioning in three-dimensional space is more natural due to the type of

positioning of the neurons in a real brain, moving to a more neurobio-

logically plausible model. Also in this context, it would be interesting to

study the possibly increase of performance of the model in comparison to

a model with two-dimensional maps. Investigating the results by taking

this path would require a too radical change to the model, and the need

to re-evaluate again the SOM ability to categorize the new topology, in ad-

dition to a careful study about how the SOM-Toolbox library indexes the

units arranged on a symmetrical three-dimensional structure as a toroid.

5.1.3 Attentional weights

A problem often faced in models that try to study language learning

is related to the attention that is given to the various input parts, or better,

the various characteristics that describe input. Models like ALCOVE [12]

or Lex [32] provide attentional weights that mediate the importance of

each input dimension to build more solid boundaries and better define

in semantics (or syntax) of certain categories (words). If in a child the

concept of "dog", for instance, exists and is well defined, then it is easy

to imagine that the same concept in the same child will have undergone

an evolution at the age of ten years: a first approximation of this evolu-

tionary process might be an information enrichment. Thus, numerically

speaking, we could say that the concept of dog is first described by a few
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representative features, we say X in number, and that over time has been

enriched up to, for instance, 3X features. However, the concept of dog is

well established probably in every culture that came into contact with the

animal: how many and which features describe this concept and others?

This is a one million dollars question, but we can say with certainty

that the concept is still described by X features, or even 3X distinct fea-

tures, in every child age: we say that the number of possible information

related to the concept of dog is limited. However, not all this information

is available to the child or to a young person or to an adult in the same

way: some of this information is removed, as if it never existed. Thus, a

shape-bias involved in the categorization of early childhood process, but

sooner or later we could image that the previously discarded information

will recur and will be stored so as to refine the concept created earlier.

This evolution of the input representation can be translated in a change-

of-attention given to the various features that describe inputs. Imagine an

input featured on 20 different dimensions: a SOM, or similarly a GSOM,

defined on a two dimensional grid is displayed as a sheet of neurons.

Each is linked to a weight vector with 20 elements. We could interrupt

the process of organization on the first three dimensions, and topologi-

cally organize a map as if the input were described using only 3 features

(for instance, x, y and z, as wide, length and depth). An evolutionary pro-

cess that incorporates the dimensions spaced over time might be a good

approximation of the attention that a child provides to input details that

processes. The process of organizing maps could exist until a certain de-

gree of cohesion of the categories identified on the map is reached, and

then incorporate the new dimensions and start the organization whereas

a new level of depth. One (G) SOM, with attentional weights of any size,

may be a good carrier for explaining the variation in the input process-

ing capacity similar to that recorded in the models that explain language

learning in adults.

5.1.4 Expansion criteria

In the literature, many growing techniques have been proposed: as

already said, the idea of B. Fritzke was convenient and effective to imple-



5.1 future possible expansion 111

ment in our model because of its intrinsic characteristics. In this contest,

simulate the auditory visual cortex could be done using auto-associators,

or multi-level networks, or multi-level SOM. There are many possibili-

ties, and many models available in the literature: in the future, it would

be interesting to try to take alternative routes that make use of different

patterns, while maintaining the psychological coherence, and creating a

comprehensive comparison of multiple implementations with different

models. For instance, learning by association (Hebbian training) could be

used pro-actively to facilitate the formation of well-defined categories on

the models. A crucial aspect, which we discussed in part in the paragraph

related to the stage of fine-tuning, regards the memory: this is certainly

a fundamental element of the entire nervous system. A possible evolu-

tion of the model could relate to storing maps (or substitute models of

which we talked earlier) in different moments during training phase, in a

process that can simulate "removal" of memories, that is, the inability to

recognize things learned previously. In this scenario, further studies on

the formation of primitive knowledge and secondary knowledge should

be made, not to run the risk of turning a simulation model (which aims

to simulate a real process to find a solution for a problem) in a resolving

model (which aims to find a solution to a real problem regardless of how

this is found).





A
A P P E N D I X - T R I A L R E S U LT S

This appendix shows the results of the experiment averaged over multi-

ple runs, grouped for readability. At the bottom of the tables there is a

description of the test conducted.
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Stats/Epochs Visual Q.Error Auditory Q.Error % Learned

All 100 categories after 100 epochs 25.82 11.15 39.25%

All 100 categories after 200 epochs 25.03 10.64 49.08%

All 100 categories after 300 epochs 24.53 10.35 57.08%

All 100 categories after 400 epochs 24.05 10.19 61.67%

All 100 categories after 500 epochs 23.68 10.05 65.50%

All 100 categories after 600 epochs 23.21 9.93 68.50%

All 100 categories after 700 epochs 22.90 9.83 74.83%

All 100 categories after 800 epochs 22.50 9.74 77.17%

All 100 categories after 900 epochs 22.08 9.64 78.58%

All 100 categories after 900 epochs 21.72 9.55 78.58%

Table 13: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with grid

dimension 25 · 25, during standard SOM training with standard Heb-

bian training, introduced every 100 epoch without using the old synap-

tic connections.
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Stats/Epochs Visual Q.Error Auditory Q.Error % Learned

All 100 categories after 100 epochs 25.85 11.09 36.67%

All 100 categories after 200 epochs 25.06 10.59 48.50%

All 100 categories after 300 epochs 24.53 10.31 56.08%

All 100 categories after 400 epochs 24.04 10.13 61.42%

All 100 categories after 500 epochs 23.69 9.99 65.08%

All 100 categories after 600 epochs 23.30 9.85 69.25%

All 100 categories after 700 epochs 22.89 9.73 73.83%

All 100 categories after 800 epochs 22.53 9.65 75.33%

All 100 categories after 900 epochs 22.14 9.59 79.08%

All 100 categories after 900 epochs 21.82 9.50 79.08%

Table 14: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with grid

dimension 25 ·25, during standard SOM training with incremental Heb-

bian training, introduced every 100 epoch using the same synaptic con-

nections of previous training.



116 appendix - trial results

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 14.46 13.62 15.88 17.91 19.01 20.12 20.81 21.68 22.34 22.84

Auditory Map Q.Error 6.68 6.19 6.83 7.60 8.15 8.65 9.00 9.39 9.67 9.93

First 10 categories 100.00% 100.00% 100.00% 98.33% 100.00% 98.33% 96.67% 97.50% 100.00% 98.33%

Next 20 categories (1− 20) / 100.00% 99.17% 99.17% 98.33% 98.75% 96.67% 95.42% 96.67% 94.58%

Next 30 categories (1− 30) / / 94.17% 96.67% 96.67% 97.50% 96.67% 94.72% 95.28% 92.50%

Next 40 categories (1− 40) / / / 88.54% 94.17% 95.83% 95.42% 93.54% 94.38% 92.29%

Next 50 categories (1− 50) / / / / 87.00% 92.33% 92.83% 91.33% 92.50% 90.33%

Next 60 categories (1− 60) / / / / / 82.50% 86.39% 85.97% 87.08% 84.31%

Next 70 categories (1− 70) / / / / / / 77.62% 79.17% 81.43% 78.69%

Next 80 categories (1− 80) / / / / / / / 71.67% 73.96% 73.33%

Next 90 categories (1− 90) / / / / / / / / 67.41% 67.69%

Next 100 categories (1− 100) / / / / / / / / / 61.08%

Tot. correct / Tot. Tested 100.00% 100.00% 94.17% 88.54% 87.00% 82.50% 77.62% 71.67% 67.41% 61.08%

Table 15: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with grid

dimension 25 · 25, after a spaced out incremental introduction of cate-

gories (12 exemplars from 10 new categories every 100 epochs) during

SOM training and a single labelling event during Hebbian training (1

exemplar for each category).

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 14.46 13.62 15.88 17.91 19.01 20.12 20.81 21.68 22.34 22.84

Auditory Map Q.Error 6.68 6.19 6.83 7.60 8.15 8.65 9.00 9.39 9.67 9.93

First 10 categories 120 120 120 118 120 118 116 117 120 118

Next 20 categories (1− 20) / 240 238 238 236 237 232 229 232 227

Next 30 categories (1− 30) / / 339 348 348 351 348 341 343 333

Next 40 categories (1− 40) / / / 425 452 460 458 449 453 443

Next 50 categories (1− 50) / / / / 522 554 557 548 555 542

Next 60 categories (1− 60) / / / / / 594 622 619 627 607

Next 70 categories (1− 70) / / / / / / 652 665 684 661

Next 80 categories (1− 80) / / / / / / / 688 710 704

Next 90 categories (1− 90) / / / / / / / / 728 731

Next 100 categories (1− 100) / / / / / / / / / 733

Tot. correct / Tot. Tested 120 240 339 425 522 594 652 688 728 733

Table 16: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using static maps

both with grid dimension 25 · 25, after a spaced out incremental intro-

duction of categories (12 exemplars from 10 new categories every 100

epochs) during SOM training and a single labelling event during Heb-

bian training (1 exemplar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 12.01 12.09 12.64 13.32 13.19 13.89 14.62 15.46 15.01 30.46

Auditory Map Q.Error 5.44 5.67 5.81 6.02 6.16 6.49 6.71 6.66 6.81 14.08

First 10 categories 95.83% 88.33% 54.17% 34.17% 21.67% 11.67% 7.50% 5.00% 2.50% 2.50%

Next 20 categories (11− 20) / 90.83% 72.50% 52.92% 38.33% 23.33% 12.08% 10.42% 5.00% 4.58%

Next 30 categories (21− 30) / / 79.17% 64.72% 50.28% 35.28% 21.11% 15.28% 12.78% 9.72%

Next 40 categories (31− 40) / / / 72.71% 60.83% 48.12% 35.62% 29.79% 23.12% 20.00%

Next 50 categories (41− 50) / / / / 67.83% 57.33% 45.83% 39.67% 30.17% 27.00%

Next 60 categories (51− 60) / / / / / 63.89% 54.03% 47.50% 39.17% 36.11%

Next 70 categories (61− 70) / / / / / / 59.88% 53.93% 45.83% 41.90%

Next 80 categories (71− 80) / / / / / / / 59.69% 51.46% 46.98%

Next 90 categories (81− 90) / / / / / / / / 56.85% 52.87%

Next 100 categories (91− 100) / / / / / / / / / 47.67%

Tot. correct / Tot. Tested 95.83% 90.83% 79.17% 72.71% 67.83% 63.89% 59.88% 59.69% 56.85% 47.67%

Table 17: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with grid

dimension 25 ·25, after a spaced out not incremental introduction of cat-

egories (12 exemplars from 10 new categories with replacement every

100 epochs) during SOM training and a single labelling event during

Hebbian training (1 exemplar for each category).

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 12.01 12.09 12.64 13.32 13.19 13.89 14.62 15.46 15.01 30.46

Auditory Map Q.Error 5.44 5.67 5.81 6.02 6.16 6.49 6.71 6.66 6.81 14.08

First 10 categories 115 106 65 41 26 14 9 6 3 3

Next 20 categories (11− 20) / 218 174 127 92 56 29 25 12 11

Next 30 categories (21− 30) / / 285 233 181 127 76 55 46 35

Next 40 categories (31− 40) / / / 349 292 231 171 143 111 96

Next 50 categories (41− 50) / / / / 407 344 275 238 181 162

Next 60 categories (51− 60) / / / / / 460 389 342 282 260

Next 70 categories (61− 70) / / / / / / 503 453 385 352

Next 80 categories (71− 80) / / / / / / / 573 494 451

Next 90 categories (81− 90) / / / / / / / / 614 571

Next 100 categories (91− 100) / / / / / / / / / 572

Tot. correct / Tot. Tested 115 218 285 349 407 460 503 573 614 572

Table 18: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using static maps

both with grid dimension 25 · 25, after a spaced out not incremental

introduction of categories (12 exemplars from 10 new categories with

replacement every 100 epochs) during SOM training and a single la-

belling event during Hebbian training (1 exemplar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.80 13.08 14.56 16.73 18.34 19.92 20.44 21.62 22.37 23.52

Auditory Map Q.Error 5.42 5.64 6.32 6.87 7.82 8.31 8.98 9.35 9.61 10.36

First 10 categories 100.00% 97.50% 98.33% 95.00% 98.33% 93.33% 93.33% 89.17% 87.50% 90.00%

Next 20 categories (1− 20) / 98.75% 98.33% 95.83% 96.67% 92.92% 92.08% 89.17% 88.75% 89.58%

Next 30 categories (1− 30) / / 98.89% 94.17% 96.11% 89.44% 89.72% 89.17% 88.61% 90.28%

Next 40 categories (1− 40) / / / 93.96% 95.00% 89.58% 88.96% 88.75% 87.08% 89.38%

Next 50 categories (1− 50) / / / / 93.33% 89.17% 89.33% 89.83% 88.67% 89.83%

Next 60 categories (1− 60) / / / / / 87.22% 88.19% 88.89% 89.03% 88.61%

Next 70 categories (1− 70) / / / / / / 84.88% 85.24% 85.95% 85.60%

Next 80 categories (1− 80) / / / / / / / 80.73% 82.08% 81.77%

Next 90 categories (1− 90) / / / / / / / / 78.33% 81.02%

Next 100 categories (1− 100) / / / / / / / / / 73.00%

Tot. correct / Tot. Tested 100.00% 98.75% 98.89% 93.96% 93.33% 87.22% 84.88% 80.73% 78.33% 73.00%

Table 19: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with

grid dimension 25 · 25, after a spaced out semi-incremental introduc-

tion of categories (12 exemplars from 10 new categories and 4 for

old-categories every 100 epochs) during SOM training and a single la-

belling event during Hebbian training (1 exemplar for each category).

Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.80 13.08 14.56 16.73 18.34 19.92 20.44 21.62 22.37 23.52

Auditory Map Q.Error 5.42 5.64 6.32 6.87 7.82 8.31 8.98 9.35 9.61 10.36

First 10 categories 120 117 118 114 118 112 112 107 105 108

Next 20 categories (1− 20) / 237 236 230 232 223 221 214 213 215

Next 30 categories (1− 30) / / 356 339 346 322 323 321 319 325

Next 40 categories (1− 40) / / / 451 456 430 427 426 418 429

Next 50 categories (1− 50) / / / / 560 535 536 539 532 539

Next 60 categories (1− 60) / / / / / 628 635 640 641 638

Next 70 categories (1− 70) / / / / / / 713 716 722 719

Next 80 categories (1− 80) / / / / / / / 775 788 785

Next 90 categories (1− 90) / / / / / / / / 846 875

Next 100 categories (1− 100) / / / / / / / / / 876

Tot. correct / Tot. Tested 120 237 356 451 560 628 713 775 846 876

Table 20: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using static maps

both with grid dimension 25 ·25, after a spaced out semi-incremental in-

troduction of categories (12 exemplars from 10 new categories and 4 for

old-categories every 100 epochs) during SOM training and a single la-

belling event during Hebbian training (1 exemplar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.78 11.52 11.62 12.39 11.91 11.52 12.27 11.58 12.06 32.82

Auditory Map Q.Error 5.50 5.27 5.59 5.03 5.19 5.29 5.19 5.39 5.26 14.72

First 10 categories 89.17% 79.17% 23.33% 10.00% 5.83% 2.50% 3.33% 3.33% / 5.00%

Next 20 categories (11− 20) / 82.50% 48.75% 26.67% 9.17% 5.00% 4.17% 2.92% 0.42% 4.58%

Next 30 categories (21− 30) / / 60.56% 33.06% 13.06% 5.56% 5.56% 3.89% 1.39% 3.89%

Next 40 categories (31− 40) / / / 46.04% 26.04% 11.25% 8.12% 3.54% 1.04% 3.33%

Next 50 categories (41− 50) / / / / 38.17% 20.83% 13.00% 4.50% 1.33% 3.67%

Next 60 categories (51− 60) / / / / / 31.67% 21.94% 7.36% 2.64% 4.03%

Next 70 categories (61− 70) / / / / / / 30.71% 15.24% 6.67% 5.48%

Next 80 categories (71− 80) / / / / / / / 25.00% 13.44% 10.62%

Next 90 categories (81− 90) / / / / / / / / 22.87% 20.00%

Next 100 categories (91− 100) / / / / / / / / / 18.17%

Tot. correct / Tot. Tested 89.17% 82.50% 60.56% 46.04% 38.17% 31.67% 30.71% 25.00% 22.87% 18.17%

Table 21: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with grid

dimension 25 · 25, after a spaced out not incremental introduction of

categories (12 exemplars from 10 new categories with replacement ev-

ery 100 epochs) during SOM training, with 1− 100 organization phase

learning/neighborhood descending values, every 100 epochs, and a

single labelling event during Hebbian training (1 exemplar for each

category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.78 11.52 11.62 12.39 11.91 11.52 12.27 11.58 12.06 32.82

Auditory Map Q.Error 5.50 5.27 5.59 5.03 5.19 5.29 5.19 5.39 5.26 14.72

First 10 categories 107 95 28 12 7 3 4 4 / 6

Next 20 categories (11− 20) / 198 117 64 22 12 10 7 1 11

Next 30 categories (21− 30) / / 218 119 47 20 20 14 5 14

Next 40 categories (31− 40) / / / 221 125 54 39 17 5 16

Next 50 categories (41− 50) / / / / 229 125 78 27 8 22

Next 60 categories (51− 60) / / / / / 228 158 53 19 29

Next 70 categories (61− 70) / / / / / / 258 128 56 46

Next 80 categories (71− 80) / / / / / / / 240 129 102

Next 90 categories (81− 90) / / / / / / / / 247 216

Next 100 categories (91− 100) / / / / / / / / / 218

Tot. correct / Tot. Tested 107 198 218 221 229 228 258 240 247 218

Table 22: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using static maps

both with grid dimension 25 · 25, after a spaced out not incremental

introduction of categories (12 exemplars from 10 new categories with

replacement every 100 epochs) during SOM training, with 1− 100 or-

ganization phase learning/neighborhood descending values, every 100

epochs, and a single labelling event during Hebbian training (1 exem-

plar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.82 12.61 15.24 16.94 18.42 20.20 21.06 22.16 23.42 25.93

Auditory Map Q.Error 5.45 5.60 6.09 6.75 7.60 8.15 8.62 9.02 9.58 10.86

First 10 categories 95.00% 92.50% 77.50% 80.83% 75.00% 70.83% 50.83% 48.33% 50.00% 46.67%

Next 20 categories (1− 20) / 92.92% 82.92% 82.08% 75.42% 67.50% 55.42% 46.67% 49.58% 45.42%

Next 30 categories (1− 30) / / 85.00% 82.50% 75.00% 68.06% 59.17% 51.39% 48.06% 46.67%

Next 40 categories (1− 40) / / / 84.38% 75.00% 64.79% 57.71% 50.62% 45.21% 46.04%

Next 50 categories (1− 50) / / / / 77.33% 67.33% 56.67% 49.83% 45.67% 47.17%

Next 60 categories (1− 60) / / / / / 71.11% 59.44% 50.28% 47.78% 47.78%

Next 70 categories (1− 70) / / / / / / 63.33% 53.57% 46.90% 47.14%

Next 80 categories (1− 80) / / / / / / / 57.92% 48.54% 47.50%

Next 90 categories (1− 90) / / / / / / / / 52.96% 52.69%

Next 100 categories (1− 100) / / / / / / / / / 47.83%

Tot. correct / Tot. Tested 95.00% 92.92% 85.00% 84.38% 77.33% 71.11% 63.33% 57.92% 52.96% 47.83%

Table 23: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with

grid dimension 25 · 25, after a spaced out semi-incremental introduc-

tion of categories (12 exemplars from 10 new categories and 4 for old-

categories every 100 epochs) during SOM training, with 1− 100 orga-

nization phase learning/neighborhood descending values, every 100

epochs, and a single labelling event during Hebbian training (1 exem-

plar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 11.82 12.61 15.24 16.94 18.42 20.20 21.06 22.16 23.42 25.93

Auditory Map Q.Error 5.45 5.60 6.09 6.75 7.60 8.15 8.62 9.02 9.58 10.86

First 10 categories 114 111 93 97 90 85 61 58 60 56

Next 20 categories (1− 20) / 223 199 197 181 162 133 112 119 109

Next 30 categories (1− 30) / / 306 297 270 245 213 185 173 168

Next 40 categories (1− 40) / / / 405 360 311 277 243 217 221

Next 50 categories (1− 50) / / / / 464 404 340 299 274 283

Next 60 categories (1− 60) / / / / / 512 428 362 344 344

Next 70 categories (1− 70) / / / / / / 532 450 394 396

Next 80 categories (1− 80) / / / / / / / 556 466 456

Next 90 categories (1− 90) / / / / / / / / 572 569

Next 100 categories (1− 100) / / / / / / / / / 574

Tot. correct / Tot. Tested 114 223 306 405 464 512 532 556 572 574

Table 24: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using static maps

both with grid dimension 25 · 25, after a spaced out semi-incremental

introduction of categories (12 exemplars from 10 new categories and 4

for old-categories every 100 epochs) during SOM training, with 1− 100

organization phase learning/neighborhood descending values, every

100 epochs, and a single labelling event during Hebbian training (1

exemplar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 10.93 11.09 11.01 11.20 11.41 12.08 12.39 13.04 13.92 17.40

Auditory Map Q.Error 5.13 5.00 5.06 5.17 5.14 5.32 5.44 5.64 5.93 7.36

First 10 categories 100.00% 100.00% 100.00% 100.00% 100.00% 98.33% 100.00% 100.00% 100.00% 100.00%

Next 20 categories (1− 20) / 100.00% 100.00% 100.00% 100.00% 99.17% 100.00% 100.00% 100.00% 100.00%

Next 30 categories (1− 30) / / 100.00% 100.00% 100.00% 99.44% 100.00% 100.00% 100.00% 100.00%

Next 40 categories (1− 40) / / / 100.00% 100.00% 99.17% 99.58% 99.17% 100.00% 99.58%

Next 50 categories (1− 50) / / / / 99.83% 98.67% 99.67% 99.00% 99.83% 99.50%

Next 60 categories (1− 60) / / / / / 98.06% 99.17% 98.61% 99.86% 98.61%

Next 70 categories (1− 70) / / / / / / 99.05% 98.45% 99.64% 98.10%

Next 80 categories (1− 80) / / / / / / / 98.23% 98.65% 97.60%

Next 90 categories (1− 90) / / / / / / / / 97.04% 97.50%

Next 100 categories (1− 100) / / / / / / / / / 88.00%

Tot. correct / Tot. Tested 100.00% 100.00% 100.00% 100.00% 99.83% 98.06% 99.05% 98.23% 97.04% 88.00%

Table 25: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using static maps both with

grid dimension 50 · 50, after a spaced out semi-incremental introduc-

tion of categories (12 exemplars from 10 new categories and 4 for old-

categories every 100 epochs) during SOM training, with 1− 100 orga-

nization phase learning/neighborhood descending values, every 100

epochs, and a single labelling event during Hebbian training (1 exem-

plar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 10.93 11.09 11.01 11.20 11.41 12.08 12.39 13.04 13.92 17.40

Auditory Map Q.Error 5.13 5.00 5.06 5.17 5.14 5.32 5.44 5.64 5.93 7.36

First 10 categories 120 120 120 120 120 118 120 120 120 120

Next 20 categories (1− 20) / 240 240 240 240 238 240 240 240 240

Next 30 categories (1− 30) / / 360 360 360 358 360 360 360 360

Next 40 categories (1− 40) / / / 480 480 476 478 476 480 478

Next 50 categories (1− 50) / / / / 599 592 598 594 599 597

Next 60 categories (1− 60) / / / / / 706 714 710 719 710

Next 70 categories (1− 70) / / / / / / 832 827 837 824

Next 80 categories (1− 80) / / / / / / / 943 947 937

Next 90 categories (1− 90) / / / / / / / / 1048 1053

Next 100 categories (1− 100) / / / / / / / / / 1056

Tot. correct / Tot. Tested 120 240 360 480 599 706 832 943 1048 1056

Table 26: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using static maps

both with grid dimension 50 · 50, after a spaced out semi-incremental

introduction of categories (12 exemplars from 10 new categories and 4

for old-categories every 100 epochs) during SOM training, with 1− 100

organization phase learning/neighborhood descending values, every

100 epochs, and a single labelling event during Hebbian training (1

exemplar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 24.08 24.16 23.07 22.93 22.31 21.73 21.75 21.83 21.48 22.47

Auditory Map Q.Error 11.01 10.44 10.57 10.55 10.36 10.31 10.35 10.01 10.00 10.22

First 10 categories 77.50% 73.33% 75.83% 80.83% 76.67% 79.17% 70.83% 69.17% 79.17% 78.33%

Next 20 categories (1− 20) / 68.75% 71.67% 77.08% 75.83% 78.33% 74.58% 73.75% 80.00% 80.42%

Next 30 categories (1− 30) / / 68.06% 74.44% 73.06% 76.11% 74.17% 76.11% 80.83% 81.94%

Next 40 categories (1− 40) / / / 68.12% 67.29% 70.83% 70.00% 71.25% 77.29% 78.12%

Next 50 categories (1− 50) / / / / 65.83% 69.17% 68.33% 71.00% 76.50% 77.17%

Next 60 categories (1− 60) / / / / / 65.00% 65.42% 68.75% 74.72% 74.58%

Next 70 categories (1− 70) / / / / / / 61.55% 67.38% 72.38% 71.07%

Next 80 categories (1− 80) / / / / / / / 65.10% 70.94% 68.85%

Next 90 categories (1− 90) / / / / / / / / 68.70% 69.26%

Next 100 categories (1− 100) / / / / / / / / / 63.75%

Tot. correct / Tot. Tested 77.50% 68.75% 68.06% 68.12% 65.83% 65.00% 61.55% 65.10% 68.70% 63.75%

Table 27: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using growing maps both with

starting grid dimension 25 · 25, with expansion in maximum variance

direction (first method), after a spaced out semi-incremental introduc-

tion of categories (12 exemplars from 10 new categories and 4 for old-

categories every 100 epochs) during SOM training, with 1− 100 orga-

nization phase learning/neighborhood descending values, every 100

epochs, and a single labelling event during Hebbian training (1 exem-

plar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 24.08 24.16 23.07 22.93 22.31 21.73 21.75 21.83 21.48 22.47

Auditory Map Q.Error 11.01 10.44 10.57 10.55 10.36 10.31 10.35 10.01 10.00 10.22

First 10 categories 93 88 91 97 92 95 85 83 95 94

Next 20 categories (1− 20) / 165 172 185 182 188 179 177 192 193

Next 30 categories (1− 30) / / 245 268 263 274 267 274 291 295

Next 40 categories (1− 40) / / / 327 323 340 336 342 371 375

Next 50 categories (1− 50) / / / / 395 415 410 426 459 463

Next 60 categories (1− 60) / / / / / 468 471 495 538 537

Next 70 categories (1− 70) / / / / / / 517 566 608 597

Next 80 categories (1− 80) / / / / / / / 625 681 661

Next 90 categories (1− 90) / / / / / / / / 742 748

Next 100 categories (1− 100) / / / / / / / / / 765

Tot. correct / Tot. Tested 93 165 245 327 395 468 517 625 742 765

Table 28: Visual and auditory maps’ quantization error and total count of

learned exemplars for categories in production test, using growing

maps both with starting grid dimension 25 · 25, with expansion

in maximum variance direction (first method), after a spaced out

semi-incremental introduction of categories (12 exemplars from 10 new

categories and 4 for old-categories every 100 epochs) during SOM train-

ing, with 1− 100 organization phase learning/neighborhood descend-

ing values, every 100 epochs, and a single labelling event during Heb-

bian training (1 exemplar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 19.79 22.23 17.91 16.14 14.74 14.80 15.26 14.99 15.72 18.77

Auditory Map Q.Error 7.67 7.39 8.32 7.36 6.56 6.63 6.58 6.26 6.37 7.70

First 10 categories 100.00% 95.83% 94.17% 98.33% 96.67% 99.17% 98.33% 93.33% 99.17% 98.33%

Next 20 categories (1− 20) / 92.08% 96.25% 95.00% 90.83% 95.42% 96.25% 92.50% 95.42% 95.00%

Next 30 categories (1− 30) / / 95.56% 94.72% 91.67% 96.39% 97.22% 93.06% 95.83% 94.44%

Next 40 categories (1− 40) / / / 95.42% 92.71% 96.46% 97.50% 94.79% 96.46% 95.42%

Next 50 categories (1− 50) / / / / 93.50% 96.17% 96.50% 95.83% 96.50% 96.00%

Next 60 categories (1− 60) / / / / / 95.97% 95.56% 95.14% 95.42% 95.00%

Next 70 categories (1− 70) / / / / / / 94.05% 94.17% 93.81% 94.17%

Next 80 categories (1− 80) / / / / / / / 94.69% 94.58% 94.27%

Next 90 categories (1− 90) / / / / / / / / 93.15% 94.26%

Next 100 categories (1− 100) / / / / / / / / / 84.83%

Tot. correct / Tot. Tested 100.00% 92.08% 95.56% 95.42% 93.50% 95.97% 94.05% 94.69% 93.15% 84.83%

Table 29: Visual and auditory maps’ quantization error and percentage of

learned categories in production test, using growing maps both with

starting grid dimension 25 · 25, with expansion in all direction (second

winning method), after a spaced out semi-incremental introduction

of categories (12 exemplars from 10 new categories and 4 for old-

categories every 100 epochs) during SOM training, with 1− 100 orga-

nization phase learning/neighborhood descending values, every 100

epochs, and a single labelling event during Hebbian training (1 exem-

plar for each category).
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Categories/Epochs 100 200 300 400 500 600 700 800 900 1000

Visual Map Q.Error 19.79 22.23 17.91 16.14 14.74 14.80 15.26 14.99 15.72 18.77

Auditory Map Q.Error 7.67 7.39 8.32 7.36 6.56 6.63 6.58 6.26 6.37 7.70

First 10 categories 120 115 113 118 116 119 118 112 119 118

Next 20 categories (1− 20) / 221 231 228 218 229 231 222 229 228

Next 30 categories (1− 30) / / 344 341 330 347 350 335 345 340

Next 40 categories (1− 40) / / / 458 445 463 468 455 463 458

Next 50 categories (1− 50) / / / / 561 577 579 575 579 576

Next 60 categories (1− 60) / / / / / 691 688 685 687 684

Next 70 categories (1− 70) / / / / / / 790 791 788 791

Next 80 categories (1− 80) / / / / / / / 909 908 905

Next 90 categories (1− 90) / / / / / / / / 1006 1018

Next 100 categories (1− 100) / / / / / / / / / 1018

Tot. correct / Tot. Tested 120 221 344 458 561 691 790 909 1006 1018

Table 30: Visual and auditory maps’ quantization error and total count

of learned exemplars for categories in production test, using

growing maps both with starting grid dimension 25 · 25, with

expansion in all direction (second winning method), after a spaced out

semi-incremental introduction of categories (12 exemplars from 10 new

categories and 4 for old-categories every 100 epochs) during SOM train-

ing, with 1− 100 organization phase learning/neighborhood descend-

ing values, every 100 epochs, and a single labelling event during Heb-

bian training (1 exemplar for each category).
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